# 1994 AHSME Problems/Problem 21

## Problem

Find the number of counter examples to the statement: $$\text{If N is an odd positive integer the sum of whose digits is 4 and none of whose digits is 0, then N is prime}."$$ $\textbf{(A)}\ 0 \qquad\textbf{(B)}\ 1 \qquad\textbf{(C)}\ 2 \qquad\textbf{(D)}\ 3 \qquad\textbf{(E)}\ 4$

## Solution

Since the sum of the digits of $N$ is $4$ and none of the digits are $0$, $N$'s digits must be the elements of the sets $\{1,1,1,1\},\{1,1,2\}$, ${2,2}$, $\{1,3\}$, or $\{4\}$.

In the first case, $N = 1111 = 101 \cdot 11$ so this is a counter example.

In the second case, $N=112$ is excluded for being even. With $N=121=11^2$ we have a counterexample. We can check $N=211$ by trial division, and verify it is indeed prime.

In the third case, $N=22$ is excluded for being even.

In the fourth case, both $N=13$ and $N=31$ are prime.

In the last case $N=4$ is excluded for being even.

This gives two counterexamples and the answer is $\fbox{C}$

 1994 AHSME (Problems • Answer Key • Resources) Preceded byProblem 20 Followed byProblem 22 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.