# Difference between revisions of "1994 AIME Problems/Problem 13"

## Problem

The equation

$x^{10}+(13x-1)^{10}=0\,$

has 10 complex roots $r_1, \overline{r_1}, r_2, \overline{r_2}, r_3, \overline{r_3}, r_4, \overline{r_4}, r_5, \overline{r_5},\,$ where the bar denotes complex conjugation. Find the value of

$\frac 1{r_1\overline{r_1}}+\frac 1{r_2\overline{r_2}}+\frac 1{r_3\overline{r_3}}+\frac 1{r_4\overline{r_4}}+\frac 1{r_5\overline{r_5}}.$

## Solution 1

Let $t = 1/x$. After multiplying the equation by $t^{10}$, $1 + (13 - t)^{10} = 0\Rightarrow (13 - t)^{10} = - 1$.

Using DeMoivre, $13 - t = \text{cis}\left(\frac {(2k + 1)\pi}{10}\right)$ where $k$ is an integer between $0$ and $9$.

$t = 13 - \text{cis}\left(\frac {(2k + 1)\pi}{10}\right) \Rightarrow \bar{t} = 13 - \text{cis}\left(-\frac {(2k + 1)\pi}{10}\right)$.

Since $\text{cis}(\theta) + \text{cis}(-\theta) = 2\cos(\theta)$, $t\bar{t} = 170 - 26\cos \left(\frac {(2k + 1)\pi}{10}\right)$ after expanding. Here $k$ ranges from 0 to 4 because two angles which sum to $2\pi$ are involved in the product.

The expression to find is $\sum t\bar{t} = 850 - 26\sum_{k = 0}^4 \cos \frac {(2k + 1)\pi}{10}$.

But $\cos \frac {\pi}{10} + \cos \frac {9\pi}{10} = \cos \frac {3\pi}{10} + \cos \frac {7\pi}{10} = \cos \frac {\pi}{2} = 0$ so the sum is $\boxed{850}$.

## Solution 2

Divide both sides by $x^{10}$ to get $$1 + \left(13-\dfrac{1}{x}\right)^{10}=0$$

Rearranging: $$\left(13-\dfrac{1}{x}\right)^{10} = -1$$

Thus, $13-\dfrac{1}{x} = \omega$ where $\omega = e^{i(\pi n/5+\pi/10)}$ where $n$ is an integer.

We see that $\dfrac{1}{x}=13-\omega$. Thus, $$\dfrac{1}{x\overline{x}}=(13-\omega)(13-\overline{\omega})=169-13(\omega+\overline{\omega})+\omega\overline{\omega}=170-13(\omega+\overline{\omega})$$

Summing over all terms: $$\dfrac{1}{r_1\overline{r_1}}+\cdots + \dfrac{1}{r_5\overline{r_5}} = 5\cdot 170 - 13(e^{i\pi/10}+\cdots +e^{i(9\pi/5+\pi/10)})$$

However, note that $e^{i\pi/10}+\cdots +e^{i(9\pi/5+\pi/10)}=0$ from drawing the numbers on the complex plane, our answer is just $$5\cdot 170=\boxed{850}$$