# Difference between revisions of "1994 AJHSME Problems/Problem 19"

## Problem soccer yay

Around the outside of a $4$ by $4$ square, construct four semicircles (as shown in the figure) with the four sides of the square as their diameters. Another square, $ABCD$, has its sides parallel to the corresponding sides of the original square, and each side of $ABCD$ is tangent to one of the semicircles. The area of the square $ABCD$ is

$[asy] pair A,B,C,D; A = origin; B = (4,0); C = (4,4); D = (0,4); draw(A--B--C--D--cycle); draw(arc((2,1),(1,1),(3,1),CCW)--arc((3,2),(3,1),(3,3),CCW)--arc((2,3),(3,3),(1,3),CCW)--arc((1,2),(1,3),(1,1),CCW)); draw((1,1)--(3,1)--(3,3)--(1,3)--cycle); dot(A); dot(B); dot(C); dot(D); dot((1,1)); dot((3,1)); dot((1,3)); dot((3,3)); label("A",A,SW); label("B",B,SE); label("C",C,NE); label("D",D,NW); [/asy]$

$\text{(A)}\ 16 \qquad \text{(B)}\ 32 \qquad \text{(C)}\ 36 \qquad \text{(D)}\ 48 \qquad \text{(E)}\ 64$

## Solution

The radius of each semicircle is $2$, half the sidelength of the square. The line straight down the middle of square $ABCD$ is the sum of two radii and the length of the smaller square, which is equivalent to its sidelength. The area of $ABCD$ is $(4+2+2)^2 = \boxed{\text{(E)}\ 64}$.

## See Also

 1994 AJHSME (Problems • Answer Key • Resources) Preceded byProblem 18 Followed byProblem 20 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.

Invalid username
Login to AoPS