Difference between revisions of "1994 USAMO Problems/Problem 1"

Line 1: Line 1:
 +
Let <math> \, k_1 < k_2 < k_3 <\cdots\, </math>, be positive integers, no two consecutive, and let <math> \, s_m = k_1+k_2+\cdots+k_m\, </math>, for <math> \, m = 1,2,3,\ldots\;\; </math>. Prove that, for each positive integer <math>n</math>, the interval <math> \, [s_n, s_{n+1})\, </math>, contains at least one perfect square.
 +
 
==Solution==
 
==Solution==
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 23:01, 22 May 2014

Let $\, k_1 < k_2 < k_3 <\cdots\,$, be positive integers, no two consecutive, and let $\, s_m = k_1+k_2+\cdots+k_m\,$, for $\, m = 1,2,3,\ldots\;\;$. Prove that, for each positive integer $n$, the interval $\, [s_n, s_{n+1})\,$, contains at least one perfect square.

Solution

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png