Difference between revisions of "1995 AHSME Problems/Problem 24"

(See also)
 
(2 intermediate revisions by one other user not shown)
Line 2: Line 2:
 
There exist positive integers <math>A,B</math> and <math>C</math>, with no [[greatest common divisor|common factor]] greater than <math>1</math>, such that
 
There exist positive integers <math>A,B</math> and <math>C</math>, with no [[greatest common divisor|common factor]] greater than <math>1</math>, such that
  
<cmath>A \log_{200} 5 + B \log_{200} 2 = C</cmath>
+
<cmath>A \log_{200} 5 + B \log_{200} 2 = C.</cmath>
  
 
What is <math>A + B + C</math>?
 
What is <math>A + B + C</math>?
Line 20: Line 20:
 
==See also==
 
==See also==
 
{{AHSME box|year=1995|num-b=23|num-a=25}}
 
{{AHSME box|year=1995|num-b=23|num-a=25}}
 +
 +
<center>[[2006 Alabama ARML TST Problems/Problem 5|A similar problem]]</center>
 +
  
 
[[Category:Introductory Algebra Problems]]
 
[[Category:Introductory Algebra Problems]]
 +
{{MAA Notice}}

Latest revision as of 14:05, 5 July 2013

Problems

There exist positive integers $A,B$ and $C$, with no common factor greater than $1$, such that

\[A \log_{200} 5 + B \log_{200} 2 = C.\]

What is $A + B + C$?


$\mathrm{(A) \ 6 } \qquad \mathrm{(B) \ 7 } \qquad \mathrm{(C) \ 8 } \qquad \mathrm{(D) \ 9 } \qquad \mathrm{(E) \ 10 }$

Solution

\[A \log_{200} 5 + B \log_{200} 2 = C\]

Simplifying and taking the logarithms away,

\[5^A \cdot 2^B=200^C=2^{3C} \cdot 5^{2C}\]

Therefore, $A=2C$ and $B=3C$. Since $A, B,$ and $C$ are relatively prime, $C=1$, $B=3$, $A=2$. $A+B+C=6 \Rightarrow \mathrm{(A)}$

See also

1995 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions


A similar problem

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png