Difference between revisions of "1995 AIME Problems/Problem 7"

(Solution 2)
(Solution 2)
Line 9: Line 9:
  
 
==Solution 2==
 
==Solution 2==
Let <math>(1 - \sin t)(1 - \cos t) = x</math>. Multiplying <math>x</math> with the given equation, <math>\frac{5x}{4} = (1 - \sin^2 t)(1 - \cos^2 t) = \sin^2 t \cos ^2 t</math>, and <math>\frac{\sqrt{5x}}{2} = \sin t \cos t</math>. Simplifying and rearranging the given equation, <math>\sin t + \cos t = \frac{5}{4} - (\sin^2 t + \cos^2 t) - \sin t \cos t = \frac{1}{4} - \frac{\sqrt{5x}}{2}</math>. Notice that <math>(1 + \sin t)(1 + \cos t) - 2(\sin t + \cos t) = x</math>, and substituting, <math>x = \frac{5}{4} - 2( \frac{1}{4} - \frac{\sqrt{5x}}{2}) = \frac{3}{4} + \sqrt{5x}</math>. Rearranging, <math>\sqrt{5x} = x - \frac{3}{4}</math>, and squaring, <math>5x = x^2 - \frac{3}{2} x + \frac{9}{16}</math>, so <math>x^2 - \frac{13}{2} x + \frac{9}{16} = 0</math>, and <math>x = \frac{13}{4} \pm \sqrt{10}</math>, but as both parts of the product <math>x</math> doesn't exceed <math>2</math>, <math>x < 4</math>. Therefore, <math>x = \frac{13}{4} - \sqrt{10}</math>, and the answer is <math> 13 + 4 + 10 = \boxed{027}</math>.
+
Let <math>(1 - \sin t)(1 - \cos t) = x</math>. Multiplying <math>x</math> with the given equation, <math>\frac{5x}{4} = (1 - \sin^2 t)(1 - \cos^2 t) = \sin^2 t \cos ^2 t</math>, and <math>\frac{\sqrt{5x}}{2} = \sin t \cos t</math>. Simplifying and rearranging the given equation, <math>\sin t + \cos t = \frac{5}{4} - (\sin^2 t + \cos^2 t) - \sin t \cos t = \frac{1}{4} - \frac{\sqrt{5x}}{2}</math>. Notice that <math>(1 + \sin t)(1 + \cos t) - 2(\sin t + \cos t) = x</math>, and substituting, <math>x = \frac{5}{4} - 2( \frac{1}{4} - \frac{\sqrt{5x}}{2}) = \frac{3}{4} + \sqrt{5x}</math>. Rearranging and squaring, <math>5x = x^2 - \frac{3}{2} x + \frac{9}{16}</math>, so <math>x^2 - \frac{13}{2} x + \frac{9}{16} = 0</math>, and <math>x = \frac{13}{4} \pm \sqrt{10}</math>, but as both parts of the product <math>x</math> doesn't exceed <math>2</math>, <math>x < 4</math>. Therefore, <math>x = \frac{13}{4} - \sqrt{10}</math>, and the answer is <math> 13 + 4 + 10 = \boxed{027}</math>.
  
 
== See also ==
 
== See also ==

Revision as of 23:58, 10 January 2014

Problem

Given that $(1+\sin t)(1+\cos t)=5/4$ and

$(1-\sin t)(1-\cos t)=\frac mn-\sqrt{k},$

where $k, m,$ and $n_{}$ are positive integers with $m_{}$ and $n_{}$ relatively prime, find $k+m+n.$

Solution

From the givens, $2\sin t \cos t + 2 \sin t + 2 \cos t = \frac{1}{2}$, and adding $\sin^2 t + \cos^2t = 1$ to both sides gives $(\sin t + \cos t)^2 + 2(\sin t + \cos t) = \frac{3}{2}$. Completing the square on the left in the variable $(\sin t + \cos t)$ gives $\sin t + \cos t = -1 \pm \sqrt{\frac{5}{2}}$. Since $|\sin t + \cos t| \leq \sqrt 2 < 1 + \sqrt{\frac{5}{2}}$, we have $\sin t + \cos t = \sqrt{\frac{5}{2}} - 1$. Subtracting twice this from our original equation gives $(\sin t - 1)(\cos t - 1) = \sin t \cos t - \sin t - \cos t + 1 = \frac{13}{4} - \sqrt{10}$, so the answer is $13 + 4 + 10 = \boxed{027}$.

Solution 2

Let $(1 - \sin t)(1 - \cos t) = x$. Multiplying $x$ with the given equation, $\frac{5x}{4} = (1 - \sin^2 t)(1 - \cos^2 t) = \sin^2 t \cos ^2 t$, and $\frac{\sqrt{5x}}{2} = \sin t \cos t$. Simplifying and rearranging the given equation, $\sin t + \cos t = \frac{5}{4} - (\sin^2 t + \cos^2 t) - \sin t \cos t = \frac{1}{4} - \frac{\sqrt{5x}}{2}$. Notice that $(1 + \sin t)(1 + \cos t) - 2(\sin t + \cos t) = x$, and substituting, $x = \frac{5}{4} - 2( \frac{1}{4} - \frac{\sqrt{5x}}{2}) = \frac{3}{4} + \sqrt{5x}$. Rearranging and squaring, $5x = x^2 - \frac{3}{2} x + \frac{9}{16}$, so $x^2 - \frac{13}{2} x + \frac{9}{16} = 0$, and $x = \frac{13}{4} \pm \sqrt{10}$, but as both parts of the product $x$ doesn't exceed $2$, $x < 4$. Therefore, $x = \frac{13}{4} - \sqrt{10}$, and the answer is $13 + 4 + 10 = \boxed{027}$.

See also

1995 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png