1995 AIME Problems/Problem 7

Revision as of 17:50, 28 July 2011 by Astroblue (talk | contribs)

Problem

Given that $(1+\sin t)(1+\cos t)=5/4$ and

$(1-\sin t)(1-\cos t)=\frac mn-\sqrt{k},$

where $k, m,$ and $n_{}$ are positive integers with $m_{}$ and $n_{}$ relatively prime, find $k+m+n.$

Solution

From the givens, $2\sin t \cos t + 2 \sin t + 2 \cos t = \frac{1}{2}$, and adding $\sin^2 t + \cos^2t = 1$ to both sides gives $(\sin t + \cos t)^2 + 2(\sin t + \cos t) = \frac{3}{2}$. Completing the square on the left in the variable $(\sin t + \cos t)$ gives $\sin t + \cos t = -1 \pm \sqrt{\frac{5}{2}}$. Since $|\sin t + \cos t| \leq \sqrt 2 < 1 + \sqrt{\frac{5}{2}}$, we have $\sin t + \cos t = \sqrt{\frac{5}{2}} - 1$. Subtracting twice this from our original equation gives $(\sin t - 1)(\cos t - 1) = \sin t \cos t - \sin t - \cos t + 1 = \frac{13}{4} - \sqrt{10}$, so the answer is $13 + 4 + 10 = 027$.

See also

1995 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions