1995 AIME Problems/Problem 9
Contents
Problem
Triangle is isosceles, with and altitude Suppose that there is a point on with and Then the perimeter of may be written in the form where and are integers. Find
Solution 1
Let , so . Then, . Expanding using the angle sum identity gives Thus, . Solving, we get . Hence, and by the Pythagorean Theorem. The total perimeter is . The answer is thus .
Solution 2
In a similar fashion, we encode the angles as complex numbers, so if , then and . So we need only find such that . This will happen when , which simplifies to . Therefore, . By the Pythagorean Theorem, , so the perimeter is , giving us our answer, .
See also
1995 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 8 |
Followed by Problem 10 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.