Difference between revisions of "1995 IMO Problems/Problem 5"

(Created page with "==Problem== Let <math>ABCDEF</math> be a convex hexagon with <math>AB=BC=CD</math> and <math>DE=EF=FA</math>, such that <math>\angle BCD=\angle EFA=\frac{\pi}{3}</math>. Suppo...")
 
(Problem)
Line 1: Line 1:
 
==Problem==
 
==Problem==
 
Let <math>ABCDEF</math> be a convex hexagon with <math>AB=BC=CD</math> and <math>DE=EF=FA</math>, such that <math>\angle BCD=\angle EFA=\frac{\pi}{3}</math>. Suppose <math>G</math> and <math>H</math> are points in the interior of the hexagon such that <math>\angle AGB=\angle DHE=\frac{2\pi}{3}</math>. Prove that <math>AG+GB+GH+DH+HE\ge CF</math>.
 
Let <math>ABCDEF</math> be a convex hexagon with <math>AB=BC=CD</math> and <math>DE=EF=FA</math>, such that <math>\angle BCD=\angle EFA=\frac{\pi}{3}</math>. Suppose <math>G</math> and <math>H</math> are points in the interior of the hexagon such that <math>\angle AGB=\angle DHE=\frac{2\pi}{3}</math>. Prove that <math>AG+GB+GH+DH+HE\ge CF</math>.
 +
==Solution==

Revision as of 20:04, 5 July 2020

Problem

Let $ABCDEF$ be a convex hexagon with $AB=BC=CD$ and $DE=EF=FA$, such that $\angle BCD=\angle EFA=\frac{\pi}{3}$. Suppose $G$ and $H$ are points in the interior of the hexagon such that $\angle AGB=\angle DHE=\frac{2\pi}{3}$. Prove that $AG+GB+GH+DH+HE\ge CF$.

Solution