1996 AIME Problems/Problem 1

Revision as of 11:44, 13 March 2015 by Mathgeek2006 (talk | contribs) (Solution)

Problem

In a magic square, the sum of the three entries in any row, column, or diagonal is the same value. The figure shows four of the entries of a magic square. Find $x$.

AIME 1996 Problem 01.png

Solution

Let's make a table.

\[\begin{array}{|c|c|c|} \multicolumn{3}{c}{\text{Table}}\\\hline x&19&96\\\hline 1&a&b\\\hline c&d&e\\\hline \end{array}\]

\begin{eqnarray*} x+19+96=x+1+c\Rightarrow c=19+96-1=114,\\ 114+96+a=x+1+114\Rightarrow a=x-95 \end{eqnarray*}

\[\begin{array}{|c|c|c|} \multicolumn{3}{c}{\text{Table in progress}}\\\hline x&19&96\\\hline 1&x-95&b\\\hline 114&d&e\\\hline \end{array}\]

\begin{eqnarray*}19+x-95+d=x+d-76=115+x\Rightarrow  d=191,\\ 114+191+e=x+115\Rightarrow e=x-190 \end{eqnarray*} \[\begin{array}{|c|c|c|} \multicolumn{3}{c}{\text{Table in progress}}\\\hline x&19&96\\\hline 1&x-95&b\\\hline 114&191&x-190\\\hline \end{array}\]

\[3x-285=x+115\Rightarrow 2x=400\Rightarrow x=\boxed{200}\]

See also

1996 AIME (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS