Difference between revisions of "1996 AIME Problems/Problem 10"

m (See also)
m (See also)
Line 19: Line 19:
 
Multiplying by <math>19</math> gives <math>x \equiv 141 \cdot 19 \equiv 2679 \equiv 159 \pmod{180}</math>.
 
Multiplying by <math>19</math> gives <math>x \equiv 141 \cdot 19 \equiv 2679 \equiv 159 \pmod{180}</math>.
 
The smallest positive solution of this is <math>x = \boxed{159}</math>
 
The smallest positive solution of this is <math>x = \boxed{159}</math>
 
== See also ==
 
{{AIME box|year=1996|num-b=9|num-a=11}}
 
 
[[Category:Intermediate Trigonometry Problems]]
 
{{MAA NoticeKALKDL:AJ LKRLJKEHLSLKWJLTP{TWK:}}
 

Revision as of 15:43, 14 April 2020

Problem

Find the smallest positive integer solution to $\tan{19x^{\circ}}=\dfrac{\cos{96^{\circ}}+\sin{96^{\circ}}}{\cos{96^{\circ}}-\sin{96^{\circ}}}$.

Solution

$\dfrac{\cos{96^{\circ}}+\sin{96^{\circ}}}{\cos{96^{\circ}}-\sin{96^{\circ}}} =$ $\dfrac{\sin{186^{\circ}}+\sin{96^{\circ}}}{\sin{186^{\circ}}-\sin{96^{\circ}}} =$ $\dfrac{\sin{(141^{\circ}+45^{\circ})}+\sin{(141^{\circ}-45^{\circ})}}{\sin{(141^{\circ}+45^{\circ})}-\sin{(141^{\circ}-45^{\circ})}} =$ $\dfrac{2\sin{141^{\circ}}\cos{45^{\circ}}}{2\cos{141^{\circ}}\sin{45^{\circ}}} = \tan{141^{\circ}}$.

The period of the tangent function is $180^\circ$, and the tangent function is one-to-one over each period of its domain.

Thus, $19x \equiv 141 \pmod{180}$.

Since $19^2 \equiv 361 \equiv 1 \pmod{180}$, multiplying both sides by $19$ yields $x \equiv 141 \cdot 19 \equiv (140+1)(18+1) \equiv 0+140+18+1 \equiv 159 \pmod{180}$.

Therefore, the smallest positive solution is $x = \boxed{159}$.

Solution 2

$\dfrac{\cos{96^{\circ}}+\sin{96^{\circ}}}{\cos{96^{\circ}}-\sin{96^{\circ}}} = \dfrac{1 + \tan{96^{\circ}}}{1-\tan{96^{\circ}}}$ which is the same as $\dfrac{\tan{45^{\circ}} + \tan{96^{\circ}}}{1-\tan{45^{\circ}}\tan{96^{\circ}}} = \tan{141{^\circ}}$.

So $19x = 141 +180n$, for some integer $n$. Multiplying by $19$ gives $x \equiv 141 \cdot 19 \equiv 2679 \equiv 159 \pmod{180}$. The smallest positive solution of this is $x = \boxed{159}$