Difference between revisions of "1996 AIME Problems/Problem 13"

(solution)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
In [[triangle]] <math>ABC</math>, <math>AB=\sqrt{30}</math>, <math>AC=\sqrt{6}</math>, and <math>BC=\sqrt{15}</math>. There is a point <math>D</math> for which <math>\overline{AD}</math> [[bisect]]s <math>\overline{BC}</math>, and <math>\angle ADB</math> is a right angle. The ratio
+
In [[triangle]] <math>ABC</math>, <math>AB=\sqrt{30}</math>, <math>AC=\sqrt{6}</math>, and <math>BC=\sqrt{15}</math>. There is a point <math>D</math> for which <math>\overline{AD}</math> [[bisect]]s <math>\overline{BC}</math>, and <math>\angle ADB</math> is a right angle. The ratio <math>\frac{[ADB]}{[ABC]}</math> can be written in the form <math>\dfrac{m}{n}</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n</math>.
 
 
<cmath>\dfrac{Area(\triangle ADB)}{Area(\triangle ABC)}</cmath>
 
 
 
can be written in the form <math>\dfrac{m}{n}</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n</math>.
 
  
 
== Solution ==
 
== Solution ==
Line 13: Line 9:
 
MP("\sqrt{30}",(A+B)/2,NW); MP("\sqrt{6}",(A+C)/2,SE); MP("\frac{\sqrt{15}}2",(E+C)/2); D(rightanglemark(B,D,A));
 
MP("\sqrt{30}",(A+B)/2,NW); MP("\sqrt{6}",(A+C)/2,SE); MP("\frac{\sqrt{15}}2",(E+C)/2); D(rightanglemark(B,D,A));
 
</asy></center>
 
</asy></center>
Let <math>E</math> be the midpoint of <math>\overline{BC}</math>. Since <math>BE = EC</math>, then <math>\triangle ABE</math> and <math>\triangle AEC</math> share the same height and have equal bases, and thus have the same area. Similarly, <math>\triangle BDE</math> and <math>BAE</math> share the same height, and have bases in the ratio <math>DE : AE</math>, so <math>\frac{[BDE]}{[BAE]} = \frac{DE}{AE}</math> (where <math>[\triangle \cdots]</math> denotes area; the concept of comparing bases and heights is known as area ratios). Now,  
+
Let <math>E</math> be the midpoint of <math>\overline{BC}</math>. Since <math>BE = EC</math>, then <math>\triangle ABE</math> and <math>\triangle AEC</math> share the same height and have equal bases, and thus have the same area. Similarly, <math>\triangle BDE</math> and <math>BAE</math> share the same height, and have bases in the ratio <math>DE : AE</math>, so <math>\frac{[BDE]}{[BAE]} = \frac{DE}{AE}</math> (see [[area ratios]]). Now,
  
 
<center><math>\dfrac{[ADB]}{[ABC]} = \frac{[ABE] + [BDE]}{2[ABE]} = \frac{1}{2} + \frac{DE}{2AE}.</math></center>
 
<center><math>\dfrac{[ADB]}{[ABC]} = \frac{[ABE] + [BDE]}{2[ABE]} = \frac{1}{2} + \frac{DE}{2AE}.</math></center>

Revision as of 17:50, 16 March 2009

Problem

In triangle $ABC$, $AB=\sqrt{30}$, $AC=\sqrt{6}$, and $BC=\sqrt{15}$. There is a point $D$ for which $\overline{AD}$ bisects $\overline{BC}$, and $\angle ADB$ is a right angle. The ratio $\frac{[ADB]}{[ABC]}$ can be written in the form $\dfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

Solution

[asy] pointpen = black; pathpen = black + linewidth(0.7); pair B=(0,0), C=(15^.5, 0), A=IP(CR(B,30^.5),CR(C,6^.5)), E=(B+C)/2, D=foot(B,A,E); D(MP("A",A)--MP("B",B,SW)--MP("C",C)--A--MP("D",D)--B); D(MP("E",E));  MP("\sqrt{30}",(A+B)/2,NW); MP("\sqrt{6}",(A+C)/2,SE); MP("\frac{\sqrt{15}}2",(E+C)/2); D(rightanglemark(B,D,A)); [/asy]

Let $E$ be the midpoint of $\overline{BC}$. Since $BE = EC$, then $\triangle ABE$ and $\triangle AEC$ share the same height and have equal bases, and thus have the same area. Similarly, $\triangle BDE$ and $BAE$ share the same height, and have bases in the ratio $DE : AE$, so $\frac{[BDE]}{[BAE]} = \frac{DE}{AE}$ (see area ratios). Now,

$\dfrac{[ADB]}{[ABC]} = \frac{[ABE] + [BDE]}{2[ABE]} = \frac{1}{2} + \frac{DE}{2AE}.$

By Stewart's Theorem, $AE = \frac{\sqrt{2(AB^2 + AC^2) - BC^2}}2 = \frac{\sqrt {57}}{2}$, and by the Pythagorean Theorem on $\triangle ABD, \triangle EBD$,

$\begin{align*}

BD^2 + \left(DE + \frac {\sqrt{57}}2\right)^2 &= 30 \\ BD^2 + DE^2 &= \frac{15}{4} \\

\end{align*}$ (Error compiling LaTeX. Unknown error_msg)

Subtracting the two equations yields $DE\sqrt{57} + \frac{57}{4} = \frac{105}{4} \Longrightarrow DE = \frac{12}{\sqrt{57}}$. Then $\frac mn = \frac{1}{2} + \frac{DE}{2AE} = \frac{1}{2} + \frac{\frac{12}{\sqrt{57}}}{2 \cdot \frac{\sqrt{57}}{2}} = \frac{27}{38}$, and $m+n = \boxed{065}$.

See also

1996 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions