Difference between revisions of "1996 AIME Problems/Problem 5"

(See also)
(solution)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
Suppose that the roots of <math>x^3+3x^2+4x-11=0</math> are <math>a</math>, <math>b</math>, and <math>c</math>, and that the roots of <math>x^3+rx^2+sx+t=0</math> are <math>a+b</math>, <math>b+c</math>, and <math>c+a</math>. Find <math>t</math>.
+
Suppose that the [[root]]s of <math>x^3+3x^2+4x-11=0</math> are <math>a</math>, <math>b</math>, and <math>c</math>, and that the roots of <math>x^3+rx^2+sx+t=0</math> are <math>a+b</math>, <math>b+c</math>, and <math>c+a</math>. Find <math>t</math>.
  
 
== Solution ==
 
== Solution ==
{{solution}}
+
Use [[Vieta's formulas]]. These tell us that <math>a + b + c = s = -3</math>, <math>ab + bc + ca = 4</math>, and <math>abc = 11</math> for the first polynomial. Then:
 +
<div style="text-align:center;">
 +
<math>\begin{eqnarray*}
 +
t &=& -(a+b)(b+c)(c+a)\\
 +
&=& -[(s-a)(s-b)(s-c)]\\
 +
&=& -[(-3-a)(-3-b)(-3-c)]\\
 +
&=& [(a+3)(b+3)(c+3)]\\
 +
&=& abc + 3[ab + bc + ca] + 9[a + b + c] + 27\\
 +
t &=& 11 + 3(4) + 9(-3) + 27 = 23</math></div>
 +
 
 
== See also ==
 
== See also ==
*[[1996 AIME Problems]]
+
{{AIME box|year=1996|num-b=4|num-a=6}}
  
{{AIME box|year=1996|num-b=4|num-a=6}}
+
[[Category:Intermediate Algebra Problems]]

Revision as of 20:07, 24 September 2007

Problem

Suppose that the roots of $x^3+3x^2+4x-11=0$ are $a$, $b$, and $c$, and that the roots of $x^3+rx^2+sx+t=0$ are $a+b$, $b+c$, and $c+a$. Find $t$.

Solution

Use Vieta's formulas. These tell us that $a + b + c = s = -3$, $ab + bc + ca = 4$, and $abc = 11$ for the first polynomial. Then:

$\begin{eqnarray*} t &=& -(a+b)(b+c)(c+a)\\

&=& -[(s-a)(s-b)(s-c)]\\
&=& -[(-3-a)(-3-b)(-3-c)]\\
&=& [(a+3)(b+3)(c+3)]\\
&=& abc + 3[ab + bc + ca] + 9[a + b + c] + 27\\
t &=& 11 + 3(4) + 9(-3) + 27 = 23$ (Error compiling LaTeX. Unknown error_msg)

See also

1996 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions