Difference between revisions of "1996 USAMO Problems/Problem 1"

m
Line 10: Line 10:
 
'''Solution:'''
 
'''Solution:'''
 
----
 
----
First, as <math>180\sin{180^\circ}=0,</math> we omit that term. Now, we multiply by <math>\sin 1^\circ</math> to get, after using product to sum, <math>(\cos 1^\circ-\cos 3^\circ+2(\cos 3^\circ-\cos5)+\cdots +89(\cos 177^\circ-\cos 179^\circ)</math>.
+
First, as <math>180\sin{180^\circ}=0,</math> we omit that term. Now, we multiply by <math>\sin 1^\circ</math> to get, after using product to sum, <math>(\cos 1^\circ-\cos 3^\circ+2(\cos 3^\circ-\cos5)+\cdots +89(\cos 177^\circ-\cos 179^\circ)</math>.  
This simplifies to <math>90\cos 1^\circ+\cos 3^\circ +\cos 5^\circ+\cos 7^\circ+...+\cos 177^\circ</math>. Since <math>\cos x=-\cos(180-x),</math> this simplifies to <math>90\cos 1^\circ</math>. We multiplied by <math>\sin 1^\circ</math> in the beginning, so we must divide by it now, and thus the sum is just <math>90\cot 1^\circ</math>, so the average is <math>\cot 1^\circ</math>, as desired.
+
This simplifies to <math>\cos 1^\circ+\cos 3^\circ +\cos 5^\circ+\cos 7^\circ+...+\cos 177^\circ-89\cos 179^\circ</math>. Since <math>\cos x=-\cos(180-x),</math> this simplifies to <math>90\cos 1^\circ</math>. We multiplied by <math>\sin 1^\circ</math> in the beginning, so we must divide by it now, and thus the sum is just <math>90\cot 1^\circ</math>, so the average is <math>\cot 1^\circ</math>, as desired.
 
   
 
   
 
<math>\Box</math>
 
<math>\Box</math>

Revision as of 11:21, 6 November 2012

Problem:


Prove that the average of the numbers $n\sin n^{\circ}\; (n = 2,4,6,\ldots,180)$ is $\cot 1^\circ$.



Solution:


First, as $180\sin{180^\circ}=0,$ we omit that term. Now, we multiply by $\sin 1^\circ$ to get, after using product to sum, $(\cos 1^\circ-\cos 3^\circ+2(\cos 3^\circ-\cos5)+\cdots +89(\cos 177^\circ-\cos 179^\circ)$. This simplifies to $\cos 1^\circ+\cos 3^\circ +\cos 5^\circ+\cos 7^\circ+...+\cos 177^\circ-89\cos 179^\circ$. Since $\cos x=-\cos(180-x),$ this simplifies to $90\cos 1^\circ$. We multiplied by $\sin 1^\circ$ in the beginning, so we must divide by it now, and thus the sum is just $90\cot 1^\circ$, so the average is $\cot 1^\circ$, as desired.

$\Box$