# 1997 AHSME Problems/Problem 15

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

## Problem

Medians $BD$ and $CE$ of triangle $ABC$ are perpendicular, $BD=8$, and $CE=12$. The area of triangle $ABC$ is $[asy] defaultpen(linewidth(.8pt)); dotfactor=4; pair A = origin; pair B = (1.25,1); pair C = (2,0); pair D = midpoint(A--C); pair E = midpoint(A--B); pair G = intersectionpoint(E--C,B--D); dot(A);dot(B);dot(C);dot(D);dot(E);dot(G); label("A",A,S);label("B",B,N);label("C",C,S);label("D",D,S);label("E",E,NW);label("G",G,NE); draw(A--B--C--cycle); draw(B--D); draw(E--C); draw(rightanglemark(C,G,D,3));[/asy]$ $\textbf{(A)}\ 24\qquad\textbf{(B)}\ 32\qquad\textbf{(C)}\ 48\qquad\textbf{(D)}\ 64\qquad\textbf{(E)}\ 96$

## Solution $[asy] defaultpen(linewidth(.8pt)); dotfactor=4; pair A = origin; pair B = (1.25,1); pair C = (2,0); pair D = midpoint(A--C); pair E = midpoint(A--B); pair F = midpoint(B--C); pair G = intersectionpoint(E--C,B--D); dot(A);dot(B);dot(C);dot(D);dot(E);dot(G);dot(F); label("A",A,S);label("B",B,N);label("C",C,S);label("D",D,S);label("E",E,NW);label("G",G,NE);label("F",F,NE); draw(A--B--C--cycle); draw(B--D); draw(E--C); draw(A--F); draw(rightanglemark(B,G,E,3));[/asy]$

One median divides a triangle into $2$ equal areas, so all three medians will divide a triangle into $6$ equal areas.

The median $CE$ is divided into a $2:1$ ratio at centroid $G$, so $GE = \frac{1}{3}\cdot CE = \frac{1}{3}\cdot 12 = 4$

Similarly, $BG = \frac{2}{3}\cdot 8 = \frac{16}{3}$

The area of the right triangle $\triangle BEG$ is $\frac{1}{2}\cdot\frac{16}{3}\cdot 4$

The area of the whole figure is $6\cdot \frac{1}{2}\cdot\frac{16}{3}\cdot 4 = 64$, and the correct answer is $\boxed{D}$.

## See also

 1997 AHSME (Problems • Answer Key • Resources) Preceded byProblem 14 Followed byProblem 16 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. Invalid username
Login to AoPS