Difference between revisions of "1997 JBMO Problems"

(Problem 3)
(Problem 4)
Line 21: Line 21:
 
Determine the triangle with sides <math>a,b,c</math> and circumradius <math>R</math> for which <math>R(b+c) = a\sqrt{bc}</math>.  
 
Determine the triangle with sides <math>a,b,c</math> and circumradius <math>R</math> for which <math>R(b+c) = a\sqrt{bc}</math>.  
  
[i]Romania[/i]
+
''Romania''
  
 
==Problem 5==
 
==Problem 5==
  
 
Let <math>n_1</math>, <math>n_2</math>, <math>\ldots</math>, <math>n_{1998}</math> be positive integers such that <cmath> n_1^2 + n_2^2 + \cdots + n_{1997}^2 = n_{1998}^2. </cmath> Show that at least two of the numbers are even
 
Let <math>n_1</math>, <math>n_2</math>, <math>\ldots</math>, <math>n_{1998}</math> be positive integers such that <cmath> n_1^2 + n_2^2 + \cdots + n_{1997}^2 = n_{1998}^2. </cmath> Show that at least two of the numbers are even

Revision as of 16:15, 30 July 2015

Problem 1

Show that given any 9 points inside a square of side length 1 we can always find 3 that form a triangle with area less than $\frac{1}{8}$

Bulgaria

Problem 2

Let $\frac{x^2+y^2}{x^2-y^2} + \frac{x^2-y^2}{x^2+y^2} = k$. Compute the following expression in terms of $k$: \[E(x,y) = \frac{x^8 + y^8}{x^8-y^8} - \frac{ x^8-y^8}{x^8+y^8}.\] Ciprus

Problem 3

Let $ABC$ be a triangle and let $I$ be the incenter. Let $N$, $M$ be the midpoints of the sides $AB$ and $CA$ respectively. The lines $BI$ and $CI$ meet $MN$ at $K$ and $L$ respectively. Prove that $AI+BI+CI>BC+KL$.

Greece

Problem 4

Determine the triangle with sides $a,b,c$ and circumradius $R$ for which $R(b+c) = a\sqrt{bc}$.

Romania

Problem 5

Let $n_1$, $n_2$, $\ldots$, $n_{1998}$ be positive integers such that \[n_1^2 + n_2^2 + \cdots + n_{1997}^2 = n_{1998}^2.\] Show that at least two of the numbers are even