Difference between revisions of "1997 USAMO Problems"

(Problem 1)
(Problem 1)
Line 7: Line 7:
  
 
[http://www.artofproblemsolving.com/Wiki/index.php/Problem_1 Solution]
 
[http://www.artofproblemsolving.com/Wiki/index.php/Problem_1 Solution]
 +
 +
== Problem 2 ==
 +
Let <math>ABC</math> be a triangle, and draw isosceles triangles <math>BCD, CAE, ABF</math> externally to <math>ABC</math>, with <math>BC, CA, AB</math> as their respective bases.

Revision as of 21:04, 30 June 2011

Problem 1

Let $p_1,p_2,p_3,...$ be the prime numbers listed in increasing order, and let $x_0$ be a real number between $0$ and $1$. For positive integer $k$, define

$x_{k}=\begin{cases}0&\text{ if }x_{k-1}=0\\ \left\{\frac{p_{k}}{x_{k-1}}\right\}&\text{ if }x_{k-1}\ne0\end{cases}$

where $\{x\}$ denotes the fractional part of $x$. (The fractional part of $x$ is given by $x-\lfloor{x}\rfloor$ where $\lfloor{x}\rfloor$ is the greatest integer less than or equal to $x$.) Find, with proof, all $x_0$ satisfying $0<x_0<1$ for which the sequence $x_0,x_1,x_2,...$ eventually becomes $0$.

Solution

Problem 2

Let $ABC$ be a triangle, and draw isosceles triangles $BCD, CAE, ABF$ externally to $ABC$, with $BC, CA, AB$ as their respective bases.