Difference between revisions of "1998 AHSME Problems/Problem 28"

(Solution 2)
m (Problem)
Line 1: Line 1:
== Problem ==
 
In triangle <math>ABC</math>, angle <math>C</math> is a [[right angle]] and <math>CB > CA</math>. Point <math>D</math> is located on <math>\overline{BC}</math> so that angle <math>CAD</math> is twice angle <math>DAB</math>. If <math>AC/AD = 2/3</math>, then <math>CD/BD = m/n</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n</math>.
 
 
<math> \mathrm{(A) \ }10 \qquad \mathrm{(B) \ }14 \qquad \mathrm{(C) \ }18 \qquad \mathrm{(D) \ }22 \qquad \mathrm{(E) \ } 26</math>
 
 
 
== Solution ==  
 
== Solution ==  
 
Let <math>\theta = \angle DAB</math>, so <math>2\theta = \angle CAD</math> and <math>3 \theta = \angle CAB</math>. Then, it is given that <math>\cos 2\theta = \frac{AC}{AD} = \frac{2}{3}</math> and
 
Let <math>\theta = \angle DAB</math>, so <math>2\theta = \angle CAD</math> and <math>3 \theta = \angle CAB</math>. Then, it is given that <math>\cos 2\theta = \frac{AC}{AD} = \frac{2}{3}</math> and

Revision as of 11:22, 30 July 2017

Solution

Let $\theta = \angle DAB$, so $2\theta = \angle CAD$ and $3 \theta = \angle CAB$. Then, it is given that $\cos 2\theta = \frac{AC}{AD} = \frac{2}{3}$ and


$\frac{BD}{CD} = \frac{AC(\tan 3\theta - \tan 2\theta)}{AC \tan 2\theta} = \frac{\tan 3\theta}{\tan 2\theta} - 1.$


Now, through the use of trigonometric identities, $\cos 2\theta = 2\cos^2 \theta - 1 = \frac{2}{\sec ^2 \theta} - 1 = \frac{1 - \tan^2 \theta}{1 + \tan ^2 \theta} = \frac{2}{3}$. Solving yields that $\tan^2 \theta = \frac 15$. Using the tangent addition identity, we find that $\tan 2\theta = \frac{2\tan \theta}{1 - \tan ^2 \theta},\ \tan 3\theta = \frac{3\tan \theta - \tan^3 \theta}{1 - 3\tan^2 \theta}$, and


$\frac{BD}{CD} = \frac{\tan 3\theta}{\tan 2\theta} - 1 = \frac{(3 - \tan^2 \theta)(1-\tan ^2 \theta)}{2(1 - 3\tan^2 \theta)} - 1 = \frac{(1 + \tan^2 \theta)^2}{2(1 - 3\tan^2 \theta)} = \frac{9}{5}$


and $\frac{CD}{BD} = \frac{5}{9} \Longrightarrow m+n = 14 \Longrightarrow \mathbf{(B)}$. (This also may have been done on a calculator by finding $\theta$ directly)

Solution 2

Let $AC=2$ and $AD=3$. By the Pythagorean Theorem, $CD=\sqrt{5}$. Let point $P$ be on segment $CD$ such that $AP$ bisects $\angle CAD$. Thus, angles $CAP$, $PAD$, and $DAB$ are congruent. Applying the angle bisector theorem on $ACD$, we get that $CP=\frac{2\sqrt{5}}{5}$ and $PD=\frac{3\sqrt{5}}{5}$. Pythagorean Theorem gives $AP=\frac{\sqrt{5}\sqrt{24}}{5}$.

Let $DB=x$. By the Pythagorean Theorem, $AB=\sqrt{(x+\sqrt{5})^{2}+2^2}$. Applying the angle bisector theorem again on triangle $APB$, we have \[\frac{\sqrt{(x+\sqrt{5})^{2}+2^2}}{x}=\frac{\frac{\sqrt{5}\sqrt{24}}{5}}{\frac{3\sqrt{5}}{5}}\] The right side simplifies to$\frac{\sqrt{24}}{3}$. Cross multiplying, squaring, and simplifying, we get a quadratic: \[5x^2-6\sqrt{5}x-27=0\] Solving this quadratic and taking the positive root gives \[x=\frac{9\sqrt{5}}{5}\] Finally, taking the desired ratio and canceling the roots gives $\frac{CD}{BD}=\frac{5}{9}$. The answer is $\fbox{(B) 14}$.

See also

1998 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 27
Followed by
Problem 29
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS