Difference between revisions of "1998 USAMO Problems"

(Problem 3)
Line 16: Line 16:
===Problem 3===
===Problem 3===
Let <math>a_0,a_1,\cdots ,a_n</math> be numbers from the interval <math>(0,\pi/2)</math> such that
Let <math>a_0,a_1,\cdots ,a_n</math> be numbers from the interval <math>(0,\pi/2)</math> such that
<cmath> \tan (a_0-\frac{\pi}{4})+ \tan (a_1-\frac{\pi}{4})+\cdots +\tan (a_n-\frac{\pi}{4})\geq n-1.  </cmath>
<cmath> \tan \left(a_0-\frac{\pi}{4}\right)+ \tan \left(a_1-\frac{\pi}{4}\right)+\cdots +\tan \left(a_n-\frac{\pi}{4}\right)\geq n-1.  </cmath>
Prove that
Prove that
<cmath> \tan a_0\tan a_1 \cdots \tan a_n\geq n^{n+1}.  </cmath>
<cmath> \tan a_0\tan a_1 \cdots \tan a_n\geq n^{n+1}.  </cmath>

Latest revision as of 05:11, 24 November 2020

Problems of the 1998 USAMO.

Day 1

Problem 1

Suppose that the set $\{1,2,\cdots, 1998\}$ has been partitioned into disjoint pairs $\{a_i,b_i\}$ ($1\leq i\leq 999$) so that for all $i$, $|a_i-b_i|$ equals $1$ or $6$. Prove that the sum \[|a_1-b_1|+|a_2-b_2|+\cdots +|a_{999}-b_{999}|\] ends in the digit $9$.


Problem 2

Let ${\cal C}_1$ and ${\cal C}_2$ be concentric circles, with ${\cal C}_2$ in the interior of ${\cal C}_1$. From a point $A$ on ${\cal C}_1$ one draws the tangent $AB$ to ${\cal C}_2$ ($B\in {\cal C}_2$). Let $C$ be the second point of intersection of $AB$ and ${\cal C}_1$, and let $D$ be the midpoint of $AB$. A line passing through $A$ intersects ${\cal C}_2$ at $E$ and $F$ in such a way that the perpendicular bisectors of $DE$ and $CF$ intersect at a point $M$ on $AB$. Find, with proof, the ratio $AM/MC$.


Problem 3

Let $a_0,a_1,\cdots ,a_n$ be numbers from the interval $(0,\pi/2)$ such that \[\tan \left(a_0-\frac{\pi}{4}\right)+ \tan \left(a_1-\frac{\pi}{4}\right)+\cdots +\tan \left(a_n-\frac{\pi}{4}\right)\geq n-1.\] Prove that \[\tan a_0\tan a_1 \cdots \tan a_n\geq n^{n+1}.\] Solution

Day 2

Problem 4

A computer screen shows a $98 \times 98$ chessboard, colored in the usual way. One can select with a mouse any rectangle with sides on the lines of the chessboard and click the mouse button: as a result, the colors in the selected rectangle switch (black becomes white, white becomes black). Find, with proof, the minimum number of mouse clicks needed to make the chessboard all one color.


Problem 5

Prove that for each $n\geq 2$, there is a set $S$ of $n$ integers such that $(a-b)^2$ divides $ab$ for every distinct $a,b\in S$.


Problem 6

Let $n \geq 5$ be an integer. Find the largest integer $k$ (as a function of $n$) such that there exists a convex $n$-gon $A_{1}A_{2}\dots A_{n}$ for which exactly $k$ of the quadrilaterals $A_{i}A_{i+1}A_{i+2}A_{i+3}$ have an inscribed circle. (Here $A_{n+j} = A_{j}$.)


See Also

1998 USAMO (ProblemsResources)
Preceded by
1997 USAMO
Followed by
1999 USAMO
1 2 3 4 5 6
All USAMO Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS