1999 AIME Problems/Problem 15

Revision as of 14:30, 3 September 2017 by Expilncalc (talk | contribs) (Solution: Added clarification)

Problem

Consider the paper triangle whose vertices are $(0,0), (34,0),$ and $(16,24).$ The vertices of its midpoint triangle are the midpoints of its sides. A triangular pyramid is formed by folding the triangle along the sides of its midpoint triangle. What is the volume of this pyramid?

Solution

[asy]defaultpen(fontsize(9)+linewidth(0.63)); pair A=(0,0), B=(16,24), C=(34,0), P=(8,12), Q=(25,12), R=(17,0); draw(A--B--C--A);draw(P--Q--R--P); draw(A--foot(A,B,C));draw(B--foot(B,A,C));draw(C--foot(C,A,B)); label("\(A\)",A,SW);label("\(B\)",B,NW);label("\(C\)",C,SE); label("\(D\)",foot(A,B,C),NE);label("\(E\)",foot(B,A,C),SW);label("\(F\)",foot(C,A,B),NW);label("\(P\)",P,NW);label("\(Q\)",Q,NE);label("\(R\)",R,SE);[/asy][asy]import three; defaultpen(linewidth(0.6)); currentprojection=orthographic(1/2,-1,1/2); triple A=(0,0,0), B=(16,24,0), C=(34,0,0), P=(8,12,0), Q=(25,12,0), R=(17,0,0), S=(16,12,12); draw(A--B--C--A); draw(P--Q--R--P); draw(S--P..S--Q..S--R); draw(S--(16,12,0)); [/asy]

Let $D$, $E$, $F$ be the feet of the altitudes to sides $BC$, $CA$, $AB$, respectively, of $\triangle ABC$. The base of the tetrahedron is the orthocenter $O$ of the large triangle, so we just need to find that, then it's easy from there. The reason why we find the orthocenter is due to the fact that once we fold the tetrahedron, finding the height requires perpendicular segments that are parallel to the large sides of the large triangle.

To find the coordinates of $O$, we need to find the intersection point of altitudes $BE$ and $AD$. The equation of $BE$ is simply $x=16$. $AD$ is perpendicular to line $BC$, so the slope of $AD$ is equal to the negative reciprocal of the slope of $BC$. $BC$ has slope $\frac{24-0}{16-34}=-\frac{4}{3}$, therefore $y=\frac{3}{4} x$. These two lines intersect at $(16,12)$, so that's the base of the height of the tetrahedron.

Let $S$ be the foot of altitude $BS$ in $\triangle BPQ$. From the Pythagorean Theorem, $h=\sqrt{BS^2-SO^2}$. However, since $S$ and $O$ are, by coincidence, the same point, $SO=0$ and $h=12$.

The area of the base is $102$, so the volume is $\frac{102*12}{3}=\boxed{408}$.

Alternate Solution 1

Consider the diagram provided in the previous solution. We first note that the medial triangle has coordinates $(17, 0, 0)$, $(8, 12, 0)$, and $(25, 12, 0)$. We can compute the area of this triangle as $102$. Suppose $(x, y, z)$ are the coordinates of the vertex of the resulting pyramid. Call this point $V$. Clearly, the height of the pyramid is $z$. The desired volume is thus $\frac{102z}{3} = 34z$.

We note that when folding the triangle to form the pyramid, some side lengths must stay the same. In particular, $VR = RA$, $VP = PB$, and $VQ = QC$. We then use distance formula to find the distances from $V$ to each of the vertices of the medial triangle. We thus arrive at a fairly simple system of equations, yielding $z = 12$. The desired volume is thus $34 \times 12 = \boxed{408}$.

Alternate Solution 2

The formed tetrahedron has pairwise parallel planar and oppositely equal length ($4\sqrt{13},15,17$) edges and can be inscribed in a parallelepiped (rectangular box) with the six tetrahedral edges as non-intersecting diagonals of the box faces. Let the edge lengths of the parallelepiped be $p,q,r$ and solve (by Pythagoras)

$p^2+q^2=4^2\cdot{13}$

$q^2+r^2=15^2$

$r^2+p^2=17^2$

to find that $(p^2,q^2,r^2)=(153,136,72)=(3^2\cdot{17},2^3\cdot{17},2^3\cdot{3^2}).$

Use the fact that the ratio of volumes between an inscribed tetrahedron and its circumscribing parallelepiped is $\tfrac{1}{3}$ and then the volume is

$\tfrac{1}{3}pqr=\tfrac{1}{3}\sqrt{2^6\cdot{3^4}\cdot{17^2}}=\boxed{408}$


Solution by D. Adrian Tanner

See also

1999 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Last Question
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png