Difference between revisions of "1999 AIME Problems/Problem 3"

(Alternate Solution)
m (Note: I'm postbanned so I can't post in the site support thread, but I fixed it.)
 
(9 intermediate revisions by 7 users not shown)
Line 1: Line 1:
== Problem ==
+
== Problem ==  
 
Find the sum of all [[positive integer]]s <math>n</math> for which <math>n^2-19n+99</math> is a [[perfect square]].
 
Find the sum of all [[positive integer]]s <math>n</math> for which <math>n^2-19n+99</math> is a [[perfect square]].
  
  
== Solution ==
+
== Solution 1==
 
If <math>n^2-19n+99=x^2</math> for some positive integer <math>x</math>, then rearranging we get <math>n^2-19n+99-x^2=0</math>. Now from the quadratic formula,  
 
If <math>n^2-19n+99=x^2</math> for some positive integer <math>x</math>, then rearranging we get <math>n^2-19n+99-x^2=0</math>. Now from the quadratic formula,  
  
 
:<math>n=\frac{19\pm \sqrt{4x^2-35}}{2}</math>
 
:<math>n=\frac{19\pm \sqrt{4x^2-35}}{2}</math>
  
Because <math>n</math> is an integer, this means <math>4x^2-35=q^2</math> for some nonnegative integer <math>q</math>. Rearranging gives <math>(2x+q)(2x-q)=35</math>. Thus <math>(2x+q, 2x-q)=(35, 1)</math> or <math>(7,5)</math>, giving <math>x=3</math> or <math>9</math>. This gives <math>n=1, 9, 10,</math> or <math>18</math>, and the sum is <math>1+9+10+18=\boxed{038}</math>.
+
Because <math>n</math> is an integer, this means <math>4x^2-35=q^2</math> for some nonnegative integer <math>q</math>. Rearranging gives <math>(2x+q)(2x-q)=35</math>. Thus <math>(2x+q, 2x-q)=(35, 1)</math> or <math>(7,5)</math>, giving <math>x=3</math> or <math>9</math>. This gives <math>n=1, 9, 10,</math> or <math>18</math>, and the sum is <math>1+9+10+18=\boxed{38}</math>.
  
 
==Solution 2==
 
==Solution 2==
Line 17: Line 17:
 
==Solution 3==
 
==Solution 3==
  
When <math> n \geq 12 </math>, then we have  
+
When <math> n \geq 12 </math>, we have  
 
<cmath> (n-10)^2 < n^2 -19n + 99 < (n-8)^2. </cmath>
 
<cmath> (n-10)^2 < n^2 -19n + 99 < (n-8)^2. </cmath>
  
Line 27: Line 27:
 
For <math> 1 \leq n < 12 </math>, it is easy to check that <math> n^2 -19n + 99 </math> is a perfect square when <math> n = 1, 9 </math> and <math> 10 </math> ( using the identity <math> n^2 -19n + 99 = (n-10)^2 + n - 1.) </math>
 
For <math> 1 \leq n < 12 </math>, it is easy to check that <math> n^2 -19n + 99 </math> is a perfect square when <math> n = 1, 9 </math> and <math> 10 </math> ( using the identity <math> n^2 -19n + 99 = (n-10)^2 + n - 1.) </math>
  
We conclude that the answer is <math>1 + 9 + 10 + 18 = 38.</math>
+
We conclude that the answer is <math>1 + 9 + 10 + 18 = \boxed{38}.</math>
  
 
== See also ==
 
== See also ==

Latest revision as of 01:18, 29 January 2021

Problem

Find the sum of all positive integers $n$ for which $n^2-19n+99$ is a perfect square.


Solution 1

If $n^2-19n+99=x^2$ for some positive integer $x$, then rearranging we get $n^2-19n+99-x^2=0$. Now from the quadratic formula,

$n=\frac{19\pm \sqrt{4x^2-35}}{2}$

Because $n$ is an integer, this means $4x^2-35=q^2$ for some nonnegative integer $q$. Rearranging gives $(2x+q)(2x-q)=35$. Thus $(2x+q, 2x-q)=(35, 1)$ or $(7,5)$, giving $x=3$ or $9$. This gives $n=1, 9, 10,$ or $18$, and the sum is $1+9+10+18=\boxed{38}$.

Solution 2

Suppose there is some $k$ such that $x^2 - 19x + 99 = k^2$. Completing the square, we have that $(x - 19/2)^2 + 99 - (19/2)^2 = k^2$, that is, $(x - 19/2)^2 + 35/4 = k^2$. Multiplying both sides by 4 and rearranging, we see that $(2k)^2 - (2x - 19)^2 = 35$. Thus, $(2k - 2x + 19)(2k + 2x - 19) = 35$. We then proceed as we did in the previous solution.


Solution 3

When $n \geq 12$, we have \[(n-10)^2 < n^2 -19n + 99 < (n-8)^2.\]

So if $n \geq 12$ and $n^2 -19n + 99$ is a perfect square, then \[n^2 -19n + 99 = (n-9)^2\]

or $n = 18$.

For $1 \leq n < 12$, it is easy to check that $n^2 -19n + 99$ is a perfect square when $n = 1, 9$ and $10$ ( using the identity $n^2 -19n + 99 = (n-10)^2 + n - 1.)$

We conclude that the answer is $1 + 9 + 10 + 18 = \boxed{38}.$

See also

1999 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png