Difference between revisions of "2000 AIME II Problems/Problem 10"

(See also)
m (Solution 2)
(6 intermediate revisions by 5 users not shown)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
A circle is inscribed in quadrilateral <math>ABCD</math>, tangent to <math>\overline{AB}</math> at <math>P</math> and to <math>\overline{CD}</math> at <math>Q</math>. Given that <math>AP=19</math>, <math>PB=26</math>, <math>CQ=37</math>, and <math>QD=23</math>, find the square of the radius of the circle.
+
A [[circle]] is [[inscribe]]d in [[quadrilateral]] <math>ABCD</math>, [[tangent]] to <math>\overline{AB}</math> at <math>P</math> and to <math>\overline{CD}</math> at <math>Q</math>. Given that <math>AP=19</math>, <math>PB=26</math>, <math>CQ=37</math>, and <math>QD=23</math>, find the [[Perfect square|square]] of the [[radius]] of the circle.
  
 
== Solution ==
 
== Solution ==
Call the center of the circle <math>O</math>. By drawing the lines from <math>O</math> tangent to the sides and from <math>O</math> to the vertices of the quadrilateral, eight congruent right triangles are formed.
+
Call the [[center]] of the circle <math>O</math>. By drawing the lines from <math>O</math> tangent to the sides and from <math>O</math> to the vertices of the quadrilateral, four pairs of congruent [[right triangle]]s are formed.
  
 
Thus, <math>\angle{AOP}+\angle{POB}+\angle{COQ}+\angle{QOD}=180</math>, or <math>(\arctan(\tfrac{19}{r})+\arctan(\tfrac{26}{r}))+(\arctan(\tfrac{37}{r})+\arctan(\tfrac{23}{r}))=180</math>.
 
Thus, <math>\angle{AOP}+\angle{POB}+\angle{COQ}+\angle{QOD}=180</math>, or <math>(\arctan(\tfrac{19}{r})+\arctan(\tfrac{26}{r}))+(\arctan(\tfrac{37}{r})+\arctan(\tfrac{23}{r}))=180</math>.
Line 9: Line 9:
 
Take the <math>\tan</math> of both sides and use the identity for <math>\tan(A+B)</math> to get <math>\tan(\arctan(\tfrac{19}{r})+\arctan(\tfrac{26}{r}))+\tan(\arctan(\tfrac{37}{r})+\arctan(\tfrac{23}{r}))=n\cdot0=0</math>.
 
Take the <math>\tan</math> of both sides and use the identity for <math>\tan(A+B)</math> to get <math>\tan(\arctan(\tfrac{19}{r})+\arctan(\tfrac{26}{r}))+\tan(\arctan(\tfrac{37}{r})+\arctan(\tfrac{23}{r}))=n\cdot0=0</math>.
  
Use the identity for <math>\tan(A+B)</math> again to get <math>\frac{\tfrac{45}{r}}{1-19\cdot\tfrac{26}{r^2}+\frac{\tfrac{60}{r}}{1-37\cdot\tfrac{23}{r^2}}}=0</math>.
+
Use the identity for <math>\tan(A+B)</math> again to get <math>\frac{\tfrac{45}{r}}{1-19\cdot\tfrac{26}{r^2}}+\frac{\tfrac{60}{r}}{1-37\cdot\tfrac{23}{r^2}}=0</math>.
  
 
Solving gives <math>r^2=\boxed{647}</math>.
 
Solving gives <math>r^2=\boxed{647}</math>.
 +
== Solution 2==
 +
Just use the area formula for tangential quadrilaterals. The numbers are really big. A terrible problem to work on (<math>a, b, c,</math> and <math>d</math> are the tangent lengths, not the side lengths).
 +
<cmath>A = \sqrt{(a+b+c+d)(abc+bcd+cda+dac)} = 105\sqrt{647}</cmath>
 +
<math>r^2=\frac{A}{a+b+c+d} = \boxed{647}</math>.
  
 +
== See also ==
 
{{AIME box|year=2000|n=II|num-b=9|num-a=11}}
 
{{AIME box|year=2000|n=II|num-b=9|num-a=11}}
 +
 +
[[Category:Intermediate Geometry Problems]]
 +
[[Category:Intermediate Trigonometry Problems]]
 +
{{MAA Notice}}

Revision as of 21:15, 8 April 2019

Problem

A circle is inscribed in quadrilateral $ABCD$, tangent to $\overline{AB}$ at $P$ and to $\overline{CD}$ at $Q$. Given that $AP=19$, $PB=26$, $CQ=37$, and $QD=23$, find the square of the radius of the circle.

Solution

Call the center of the circle $O$. By drawing the lines from $O$ tangent to the sides and from $O$ to the vertices of the quadrilateral, four pairs of congruent right triangles are formed.

Thus, $\angle{AOP}+\angle{POB}+\angle{COQ}+\angle{QOD}=180$, or $(\arctan(\tfrac{19}{r})+\arctan(\tfrac{26}{r}))+(\arctan(\tfrac{37}{r})+\arctan(\tfrac{23}{r}))=180$.

Take the $\tan$ of both sides and use the identity for $\tan(A+B)$ to get $\tan(\arctan(\tfrac{19}{r})+\arctan(\tfrac{26}{r}))+\tan(\arctan(\tfrac{37}{r})+\arctan(\tfrac{23}{r}))=n\cdot0=0$.

Use the identity for $\tan(A+B)$ again to get $\frac{\tfrac{45}{r}}{1-19\cdot\tfrac{26}{r^2}}+\frac{\tfrac{60}{r}}{1-37\cdot\tfrac{23}{r^2}}=0$.

Solving gives $r^2=\boxed{647}$.

Solution 2

Just use the area formula for tangential quadrilaterals. The numbers are really big. A terrible problem to work on ($a, b, c,$ and $d$ are the tangent lengths, not the side lengths). \[A = \sqrt{(a+b+c+d)(abc+bcd+cda+dac)} = 105\sqrt{647}\] $r^2=\frac{A}{a+b+c+d} = \boxed{647}$.

See also

2000 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png