Difference between revisions of "2000 AIME II Problems/Problem 13"

m
m
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
In the middle of a vast prairie, a firetruck is stationed at the intersection of two perpendicular straight highways. The truck travels at <math>50</math> miles per hour along the highways and at <math>14</math> miles per hour across the prairie. Consider the set of points that can be reached by the firetruck within six minutes. The area of this region is <math>m/n</math> square miles, where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m + n</math>.
+
The equation <math>2000x^6+100x^5+10x^3+x-2=0</math> has exactly two real roots, one of which is <math>\frac{m+\sqrt{n}}r</math>, where <math>m</math>, <math>n</math> and <math>r</math> are integers, <math>m</math> and <math>r</math> are relatively prime, and <math>r>0</math>. Find <math>m+n+r</math>.
  
 
== Solution ==
 
== Solution ==

Revision as of 18:41, 11 November 2007

Problem

The equation $2000x^6+100x^5+10x^3+x-2=0$ has exactly two real roots, one of which is $\frac{m+\sqrt{n}}r$, where $m$, $n$ and $r$ are integers, $m$ and $r$ are relatively prime, and $r>0$. Find $m+n+r$.

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See also

2000 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions
Invalid username
Login to AoPS