# Difference between revisions of "2000 AIME II Problems/Problem 8"

## Problem

In trapezoid $ABCD$, leg $\overline{BC}$ is perpendicular to bases $\overline{AB}$ and $\overline{CD}$, and diagonals $\overline{AC}$ and $\overline{BD}$ are perpendicular. Given that $AB=\sqrt{11}$ and $AD=\sqrt{1001}$, find $BC^2$.

## Solution

### Solution 1

Let $x = BC$ be the height of the trapezoid, and let $y = CD$. Since $AC \perp BD$, it follows that $\triangle BAC \sim \triangle CBD$, so $\frac{x}{\sqrt{11}} = \frac{y}{x} \Longrightarrow x^2 = y\sqrt{11}$.

Let $E$ be the foot of the altitude from $A$ to $\overline{CD}$. Then $AE = x$, and $ADE$ is a right triangle. By the Pythagorean Theorem, $$x^2 + \left(y-\sqrt{11}\right)^2 = 1001 \Longrightarrow x^4 - 11x^2 - 11^2 \cdot 9 \cdot 10 = 0$$

The positive solution to this quadratic equation is $x^2 = \boxed{110}$. $[asy] size(200); pathpen = linewidth(0.7); pair C=(0,0),B=(0,110^.5),A=(11^.5,B.y),D=(10*11^.5,0),E=foot(A,C,D); D(MP("A",A,(2,.5))--MP("B",B,W)--MP("C",C)--MP("D",D)--cycle); D(A--C);D(B--D);D(A--E,linetype("4 4") + linewidth(0.7)); MP("\sqrt{11}",(A+B)/2,N);MP("\sqrt{1001}",(A+D)/2,NE);MP("\sqrt{1001}",(A+D)/2,NE);MP("x",(B+C)/2,W);MP("y",(D+C)/2);D(rightanglemark(B,IP(A--C,B--D),C,20)); [/asy]$

### Solution 2

Let $BC=x$. Dropping the altitude from $A$ and using the Pythagorean Theorem tells us that $CD=\sqrt{11}+\sqrt{1001-x^2}$. Therefore, we know that vector $\vec{BD}=\langle \sqrt{11}+\sqrt{1001-x^2},-x\rangle$ and vector $\vec{AC}=\langle-\sqrt{11},-x\rangle$. Now we know that these vectors are perpendicular, so their dot product is 0. $$\vec{BD}\cdot \vec{AC}=-11-\sqrt{11(1001-x^2)}+x^2=0$$ $$(x^2-11)^2=11(1001-x^2)$$ $$x^4-11x^2-11\cdot 990=0.$$ As above, we can solve this quadratic to get the positve solution $BC^2=x^2=\boxed{110}$.

## See also

 2000 AIME II (Problems • Answer Key • Resources) Preceded byProblem 7 Followed byProblem 9 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. Invalid username
Login to AoPS