Difference between revisions of "2000 AMC 10 Problems/Problem 15"

(Solution)
(duplicate)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
==Problem==
+
#REDIRECT [[2000 AMC 12 Problems/Problem 11]]
 
 
Two non-zero real numbers, <math>a</math> and <math>b</math>, satisfy <math>ab=a-b</math>.  Find a possible value of <math>\frac{a}{b}+\frac{b}{a}-ab</math>.
 
 
 
<math>\mathrm{(A)}\ -2 \qquad\mathrm{(B)}\ -\frac{1}{2} \qquad\mathrm{(C)}\ \frac{1}{3} \qquad\mathrm{(D)}\ \frac{1}{2} \qquad\mathrm{(E)}\ 2</math>
 
 
 
==Solution==
 
 
 
<math>\begin{align*}
 
\frac{a}{b}+\frac{b}{a}-ab &= \frac{a^2+b^2}{ab}-ab \\
 
&= \frac{-a^2b^2+a^2+b^2}{ab}\\
 
\end(align*}</math>
 
 
 
Substituting <math>ab=a-b</math>, we get
 
 
 
<math>\begin{align*}
 
\frac{-(a+b)^2+a^2+b^2}{ab} &= \frac{-a^2+2ab-b^2+a^2+b^2}{ab} \\
 
&= \frac{2ab}{ab} \\
 
&= 2 \\
 
\end{align*}</math>
 
 
 
<math>\boxed{\text{E}}</math>
 
 
 
Note: the answer is B. Check your calculations when you're substituting.
 
 
 
==See Also==
 
 
 
{{AMC10 box|year=2000|num-b=14|num-a=16}}
 

Latest revision as of 23:54, 26 November 2011