2000 AMC 12 Problems

Revision as of 06:44, 18 September 2008 by Alexhhmun (talk | contribs) (Problem 25)

Problem 1

In the year $2001$, the United States will host the International Mathematical Olympiad. Let $I,M,$ and $O$ be distinct positive integers such that the product $I \cdot M \cdot O = 2001$. What is the largest possible value of the sum $I + M + O$?

$\mathrm{(A) \ 23 } \qquad \mathrm{(B) \ 55 } \qquad \mathrm{(C) \ 99 } \qquad \mathrm{(D) \ 111 } \qquad \mathrm{(E) \ 671 }$

Solution

Problem 2

$2000(2000^{2000}) =$

$\mathrm{(A) \ 2000^{2001} } \qquad \mathrm{(B) \ 4000^{2000} } \qquad \mathrm{(C) \ 2000^{4000} } \qquad \mathrm{(D) \ 4,000,000^{2000} } \qquad \mathrm{(E) \ 2000^{4,000,000} }$


Solution

Problem 3

Each day, Jenny ate $20\%$ of the jellybeans that were in her jar at the beginning of that day. At the end of the second day, $32$ remained. How many jellybeans were in the jar originally?

$\mathrm{(A) \ 40 } \qquad \mathrm{(B) \ 50 } \qquad \mathrm{(C) \ 55 } \qquad \mathrm{(D) \ 60 } \qquad \mathrm{(E) \ 75 }$

Solution

Problem 4

The Fibonacci sequence $1,1,2,3,5,8,13,21,\ldots$ starts with two 1s, and each term afterwards is the sum of its two predecessors. Which one of the ten digits is the last to appear in the units position of a number in the Fibonacci sequence?

$\mathrm{(A) \ 0 } \qquad \mathrm{(B) \ 4 } \qquad \mathrm{(C) \ 6 } \qquad \mathrm{(D) \ 7 } \qquad \mathrm{(E) \ 9 }$

Solution

Problem 5

If $|x - 2| = p,$ where $x < 2,$ then $x - p =$

$\mathrm{(A) \ -2 } \qquad \mathrm{(B) \ 2 } \qquad \mathrm{(C) \ 2-2p } \qquad \mathrm{(D) \ 2p-2 } \qquad \mathrm{(E) \ |2p-2| }$

Solution

Problem 6

Two different prime numbers between $4$ and $18$ are chosen. When their sum is subtracted from their product, which of the following numbers could be obtained?

$\mathrm{(A) \ 21 } \qquad \mathrm{(B) \ 60 } \qquad \mathrm{(C) \ 119 } \qquad \mathrm{(D) \ 180 } \qquad \mathrm{(E) \ 231 }$

Solution

Problem 7

How many positive integers $b$ have the property that $\log_{b} 729$ is a positive integer?

$\mathrm{(A) \ 0 } \qquad \mathrm{(B) \ 1 } \qquad \mathrm{(C) \ 2 } \qquad \mathrm{(D) \ 3 } \qquad \mathrm{(E) \ 4 }$

Solution

Problem 8

Figures $0$, $1$, $2$, and $3$ consist of $1$, $5$, $13$, and $25$ non-overlapping squares. If the pattern continued, how many non-overlapping squares would there be in figure $100$?

$\text {(A)}10401 \qquad \text {(B)}19801 \qquad \text {(C)} 20201 \qquad \text {(D)} 39801 \qquad \text {(E)}40801$

2000 AHSME number 8.png

Solution

Problem 9

Mrs. Walter gave an exam in a mathematics class of five students. She entered the scores in random order into a spreadsheet, which recalculated the class average after each score was entered. Mrs. Walter noticed that after each score was entered, the average was always an integer. The scores (listed in ascending order) were 71,76,80,82, and 91. What was the last score Mrs. Walters entered?

$\text{(A)} \ 71 \qquad \text{(B)} \ 76 \qquad \text{(C)} \ 80 \qquad \text{(D)} \ 82 \qquad \text{(E)} \ 91$

Solution

Problem 10

The point $P = (1,2,3)$ is reflected in the $xy$-plane, then its image $Q$ is rotated by $180^\circ$ about the $x$-axis to produce $R$, and finally, $R$ is translated by 5 units in the positive-$y$ direction to produce $S$. What are the coordinates of $S$?

$\text {(A) } (1,7, - 3) \qquad \text {(B) } ( - 1,7, - 3) \qquad \text {(C) } ( - 1, - 2,8) \qquad \text {(D) } ( - 1,3,3) \qquad \text {(E) } (1,3,3)$

Solution

Problem 11

Two non-zero real numbers, $a$ and $b,$ satisfy $ab = a - b$. Which of the following is a possible value of $\frac {a}{b} + \frac {b}{a} - ab$?

$\text{(A)} \ - 2 \qquad \text{(B)} \ \frac { - 1}{2} \qquad \text{(C)} \ \frac {1}{3} \qquad \text{(D)} \ \frac {1}{2} \qquad \text{(E)} \ 2$

Solution

Problem 12

Let A, M, and C be nonnegative integers such that $A + M + C=12$. What is the maximum value of $A \cdot M \cdot C$+$A \cdot M$+$M \cdot C$+$A\cdot C$?

$\mathrm{(A) \ 62 } \qquad \mathrm{(B) \ 72 } \qquad \mathrm{(C) \ 92 } \qquad \mathrm{(D) \ 102 } \qquad \mathrm{(E) \ 112 }$

Solution

Problem 13

One morning each member of Angela’s family drank an 8-ounce mixture of coffee with milk. The amounts of coffee and milk varied from cup to cup, but were never zero. Angela drank a quarter of the total amount of milk and a sixth of the total amount of coffee. How many people are in the family?

$\text {(A)}\ 3 \qquad \text {(B)}\ 4 \qquad \text {(C)}\ 5 \qquad \text {(D)}\ 6 \qquad \text {(E)}\ 7$

Solution

Problem 14

When the mean, median, and mode of the list

\[10,2,5,2,4,2,x\]

are arranged in increasing order, they form a non-constant arithmetic progression. What is the sum of all possible real values of $x$?

$\text {(A)}\ 3 \qquad \text {(B)}\ 6 \qquad \text {(C)}\ 9 \qquad \text {(D)}\ 17 \qquad \text {(E)}\ 20$ Solution

Problem 15

Let $f$ be a function for which $f(x/3) = x^2 + x + 1$. Find the sum of all values of $z$ for which $f(3z) = 7$.

$\text {(A)}\ -1/3 \qquad \text {(B)}\ -1/9 \qquad \text {(C)}\ 0 \qquad \text {(D)}\ 5/9 \qquad \text {(E)}\ 5/3$ Solution

Problem 16

Solution

Problem 17

Solution

Problem 18

Solution

Problem 19

Solution

Problem 20

Solution

Problem 21

Through a point on the hypotenuse of a right triangle, lines are drawn parallel to the legs of the triangle so that the triangle is divided into a square and two smaller right triangles. The area of one of the two small right triangles is $m$ times the area of the square. The ratio of the area of the other small right triangle to the area of the square is

$\text {(A)}\ \frac{1}{2m+1} \qquad \text {(B)}\ m \qquad \text {(C)}\ 1-m \qquad \text {(D)}\ \frac{1}{4m} \qquad \text {(E)}\ \frac{1}{8m^2}$

Solution

Problem 22

Solution

Problem 23

Professor Gamble buys a lottery ticket, which requires that he pick six different integers from $1$ through $46$, inclusive. He chooses his numbers so that the sum of the base-ten logarithms of his six numbers is an integer. It so happens that the integers on the winning ticket have the same property— the sum of the base-ten logarithms is an integer. What is the probability that Professor Gamble holds the winning ticket?

$\text {(A)}\ 1/5 \qquad \text {(B)}\ 1/4 \qquad \text {(C)}\ 1/3 \qquad \text {(D)}\ 1/2 \qquad \text {(E)}\ 1$

Solution

Problem 24

Solution

Problem 25

Problem

Eight congruent equilateral triangles, each of a different color, are used to construct a regular octahedron. How many distinguishable ways are there to construct the octahedron? (Two colored octahedrons are distinguishable if neither can be rotated to look just like the other.)

$\text {(A)}\ 210 \qquad \text {(B)}\ 560 \qquad \text {(C)}\ 840 \qquad \text {(D)}\ 1260 \qquad \text {(E)}\ 1680$

[asy] import three; import math; unitsize(1.5cm); currentprojection=orthographic(2,0.2,1);  triple A=(0,0,1); triple B=(sqrt(2)/2,sqrt(2)/2,0); triple C=(sqrt(2)/2,-sqrt(2)/2,0); triple D=(-sqrt(2)/2,-sqrt(2)/2,0); triple E=(-sqrt(2)/2,sqrt(2)/2,0); triple F=(0,0,-1); draw(A--B--E--cycle); draw(A--C--D--cycle); draw(F--C--B--cycle); draw(F--D--E--cycle,dotted+linewidth(0.7)); [/asy]

Solution

See also