Difference between revisions of "2000 AMC 12 Problems/Problem 15"

(Solution 4)
m (Problem)
Line 2: Line 2:
  
 
== Problem ==
 
== Problem ==
Let <math>f</math> be a [[function]] for which <math>f(x/3) = x^2 + x + 1</math>. Find the sum of all values of <math>z</math> for which <math>f(3z) = 7</math>.
+
Let <math>f</math> be a [[function]] for which <math>f(\dfrac{x}{3}) = x^2 + x + 1</math>. Find the sum of all values of <math>z</math> for which <math>f(3z) = 7</math>.
  
<math>\text {(A)}\ -1/3 \qquad \text {(B)}\ -1/9 \qquad \text {(C)}\ 0 \qquad \text {(D)}\ 5/9 \qquad \text {(E)}\ 5/3</math>
+
<cmath>\text {(A)}\ -1/3 \qquad \text {(B)}\ -1/9 \qquad \text {(C)}\ 0 \qquad \text {(D)}\ 5/9 \qquad \text {(E)}\ 5/3</cmath>
  
 
==Solution 1==
 
==Solution 1==

Revision as of 12:49, 7 September 2020

The following problem is from both the 2000 AMC 12 #15 and 2000 AMC 10 #24, so both problems redirect to this page.

Problem

Let $f$ be a function for which $f(\dfrac{x}{3}) = x^2 + x + 1$. Find the sum of all values of $z$ for which $f(3z) = 7$.

\[\text {(A)}\ -1/3 \qquad \text {(B)}\ -1/9 \qquad \text {(C)}\ 0 \qquad \text {(D)}\ 5/9 \qquad \text {(E)}\ 5/3\]

Solution 1

Let $y = \frac{x}{3}$; then $f(y) = (3y)^2 + 3y + 1 = 9y^2 + 3y+1$. Thus $f(3z)-7=81z^2+9z-6=3(9z-2)(3z+1)=0$, and $z = -\frac{1}{3}, \frac{2}{9}$. These sum up to $\boxed{\textbf{(B) }-\frac19}$.

Solution 2

Similar to Solution 1, we have $=81z^2+9z-6=0.$ The answer is the sum of the roots, which by Vieta's Formulas is $-\frac{b}{a}=-\frac{9}{81}=\boxed{\textbf{(B) }-\frac19}$.

~dolphin7

Solution 3

Set $f(\frac{x}{3}) = x^2+x+1=7$ to get $x^2+x-6=0.$ From either finding the roots or using Vieta's formulas, we find the sum of these roots to be $-1.$ Each root of this equation is $9$ times greater than a corresponding root of $f(3z) = 7$ (because $\frac{x}{3} = 3z$ gives $x = 9z$), thus the sum of the roots in the equation $f(3z)=7$ is $-\frac{1}{9}$ or $\boxed{\textbf{(B) }-\frac19}$.

Solution 4

Since we have $f(x/3)$, $f(3z)$ occurs at $x=9z.$ Thus, $f(9z/3) = f(3z) = (9z)^2 + 9z + 1$. We set this equal to 7:

$81z^2 + 9z +1 = 7 \Longrightarrow 81z^2 + 9z - 6 = 0$. For any quadratic $ax^2 + bx +c = 0$, the sum of the roots is $-\frac{b}{a}$. Thus, the sum of the roots of this equation is $-\frac{9}{81} = \boxed{\textbf{(B) }-\frac19}$.

See also

2000 AMC 12 (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions
2000 AMC 10 (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png