Difference between revisions of "2000 AMC 12 Problems/Problem 21"

(soln)
 
m (Solution: +img)
Line 5: Line 5:
  
 
== Solution ==
 
== Solution ==
{{image}}
+
[[Image:2000_12_AMC-21.png]]
  
 
[[Without loss of generality]] let a side of the square be <math>1</math>. Simple angle chasing shows that the two right triangles are [[similar triangles|similar]]. Thus the ratio of the sides of the triangles are the same. Since <math>A = \frac{1}{2}bh = \frac{h}{2}</math>, the height of the triangle with area <math>m</math> is <math>2m</math>. Therefore <math>\frac{2m}{1} = \frac{1}{x}</math> where <math>x</math> is the base of the other triangle. <math>x = \frac{1}{2m}</math>, and the area of that triangle is <math>\frac{1}{2} \cdot 1 \cdot \frac{1}{2m} = \frac{1}{4m}\ \text{(D)}</math>.
 
[[Without loss of generality]] let a side of the square be <math>1</math>. Simple angle chasing shows that the two right triangles are [[similar triangles|similar]]. Thus the ratio of the sides of the triangles are the same. Since <math>A = \frac{1}{2}bh = \frac{h}{2}</math>, the height of the triangle with area <math>m</math> is <math>2m</math>. Therefore <math>\frac{2m}{1} = \frac{1}{x}</math> where <math>x</math> is the base of the other triangle. <math>x = \frac{1}{2m}</math>, and the area of that triangle is <math>\frac{1}{2} \cdot 1 \cdot \frac{1}{2m} = \frac{1}{4m}\ \text{(D)}</math>.

Revision as of 11:57, 5 January 2008

Problem

Through a point on the hypotenuse of a right triangle, lines are drawn parallel to the legs of the triangle so that the triangle is divided into a square and two smaller right triangles. The area of one of the two small right triangles is $m$ times the area of the square. The ratio of the area of the other small right triangle to the area of the square is

$\text {(A)}\ \frac{1}{2m+1} \qquad \text {(B)}\ m \qquad \text {(C)}\ 1-m \qquad \text {(D)}\ \frac{1}{4m} \qquad \text {(E)}\ \frac{1}{8m^2}$

Solution

2000 12 AMC-21.png

Without loss of generality let a side of the square be $1$. Simple angle chasing shows that the two right triangles are similar. Thus the ratio of the sides of the triangles are the same. Since $A = \frac{1}{2}bh = \frac{h}{2}$, the height of the triangle with area $m$ is $2m$. Therefore $\frac{2m}{1} = \frac{1}{x}$ where $x$ is the base of the other triangle. $x = \frac{1}{2m}$, and the area of that triangle is $\frac{1}{2} \cdot 1 \cdot \frac{1}{2m} = \frac{1}{4m}\ \text{(D)}$.

See also

2000 AMC 12 (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions