Difference between revisions of "2001 AIME II Problems/Problem 13"

m
(solution)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
In quadrilateral <math>ABCD</math>, <math>\angle{BAD}\cong\angle{ADC}</math> and <math>\angle{ABD}\cong\angle{BCD}</math>, <math>AB = 8</math>, <math>BD = 10</math>, and <math>BC = 6</math>. The length <math>CD</math> may be written in the form <math>\frac {m}{n}</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m + n</math>.
+
In [[quadrilateral]] <math>ABCD</math>, <math>\angle{BAD}\cong\angle{ADC}</math> and <math>\angle{ABD}\cong\angle{BCD}</math>, <math>AB = 8</math>, <math>BD = 10</math>, and <math>BC = 6</math>. The length <math>CD</math> may be written in the form <math>\frac {m}{n}</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m + n</math>.
  
 
== Solution ==
 
== Solution ==
{{solution}}
+
Extend <math>\overline{AD}</math> and <math>\overline{BC}</math> to meet at <math>E</math>. Then, since <math>\angle BAD = \angle ADC</math> and <math>\angle ABD = \angle DCE</math>, we know that <math>\triangle ABD \sim \triangle DCE</math>. Hence <math>\angle ADB = \angle DEC</math>, and <math>\triangle BDE</math> is [[isosceles triangle|isosceles]]. Then <math>BD = BE = 10</math>.
 +
 
 +
<center><asy>
 +
/* We arbitrarily set AD = x */
 +
real x = 60^.5, anglesize = 28;
 +
 
 +
pointpen = black; pathpen = black+linewidth(0.7); pen d = linetype("6 6")+linewidth(0.7);
 +
pair A=(0,0), D=(x,0), B=IP(CR(A,8),CR(D,10)), E=(-3x/5,0), C=IP(CR(E,16),CR(D,64/5));
 +
D(MP("A",A)--MP("B",B,NW)--MP("C",C,NW)--MP("D",D)--cycle); D(B--D); D(A--MP("E",E)--B,d);
 +
D(anglemark(D,A,B,anglesize));D(anglemark(C,D,A,anglesize));D(anglemark(A,B,D,anglesize));D(anglemark(E,C,D,anglesize));D(anglemark(A,B,D,5/4*anglesize));D(anglemark(E,C,D,5/4*anglesize));
 +
MP("10",(B+D)/2,SW);MP("8",(A+B)/2,W);MP("6",(B+C)/2,NW);
 +
</asy></center>
 +
 
 +
Using the similarity, we have:
 +
 
 +
<cmath>\frac{AB}{BD} = \frac 8{10} = \frac{CD}{CE} = \frac{CD}{16} \Longrightarrow CD = \frac{64}5</cmath>
 +
 
 +
The answer is <math>m+n = \boxed{069}</math>.
 +
 
 +
 
 +
'''Extension''': Find <math>AD</math>.
  
 
== See also ==
 
== See also ==
 
{{AIME box|year=2001|n=II|num-b=12|num-a=14}}
 
{{AIME box|year=2001|n=II|num-b=12|num-a=14}}
 +
 +
[[Category:Intermediate Geometry Problems]]

Revision as of 09:55, 27 July 2008

Problem

In quadrilateral $ABCD$, $\angle{BAD}\cong\angle{ADC}$ and $\angle{ABD}\cong\angle{BCD}$, $AB = 8$, $BD = 10$, and $BC = 6$. The length $CD$ may be written in the form $\frac {m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m + n$.

Solution

Extend $\overline{AD}$ and $\overline{BC}$ to meet at $E$. Then, since $\angle BAD = \angle ADC$ and $\angle ABD = \angle DCE$, we know that $\triangle ABD \sim \triangle DCE$. Hence $\angle ADB = \angle DEC$, and $\triangle BDE$ is isosceles. Then $BD = BE = 10$.

[asy] /* We arbitrarily set AD = x */ real x = 60^.5, anglesize = 28;  pointpen = black; pathpen = black+linewidth(0.7); pen d = linetype("6 6")+linewidth(0.7); pair A=(0,0), D=(x,0), B=IP(CR(A,8),CR(D,10)), E=(-3x/5,0), C=IP(CR(E,16),CR(D,64/5)); D(MP("A",A)--MP("B",B,NW)--MP("C",C,NW)--MP("D",D)--cycle); D(B--D); D(A--MP("E",E)--B,d); D(anglemark(D,A,B,anglesize));D(anglemark(C,D,A,anglesize));D(anglemark(A,B,D,anglesize));D(anglemark(E,C,D,anglesize));D(anglemark(A,B,D,5/4*anglesize));D(anglemark(E,C,D,5/4*anglesize)); MP("10",(B+D)/2,SW);MP("8",(A+B)/2,W);MP("6",(B+C)/2,NW); [/asy]

Using the similarity, we have:

\[\frac{AB}{BD} = \frac 8{10} = \frac{CD}{CE} = \frac{CD}{16} \Longrightarrow CD = \frac{64}5\]

The answer is $m+n = \boxed{069}$.


Extension: Find $AD$.

See also

2001 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions