2001 AIME II Problems/Problem 4

Revision as of 22:46, 25 July 2008 by Azjps (talk | contribs) (fmt/asy)

Problem

Let $R = (8,6)$. The lines whose equations are $8y = 15x$ and $10y = 3x$ contain points $P$ and $Q$, respectively, such that $R$ is the midpoint of $\overline{PQ}$. The length of $PQ$ equals $\frac {m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m + n$.

Solution

[asy] pointpen = black; pathpen = black+linewidth(0.7); pair R = (8,6), P = (32,60)/7, Q= (80,24)/7; D((0,0)--MP("x",(13,0),E),EndArrow(6)); D((0,0)--MP("y",(0,10),N),EndArrow(6)); D((0,0)--(10/(15/8),10),EndArrow(6)); D((0,0)--(13,13 * 3/10),EndArrow(6)); D(D(MP("P",P,NW))--D(MP("Q",Q),SE),linetype("4 4")); D(MP("R",R,NE)); [/asy]

The coordinates of $P$ can be written as $\left(a, \frac{15a}8\right)$ and the coordinates of point $Q$ can be written as $\left(b,\frac{3b}{10}\right)$. By the midpoint formula, we have $\frac{a+b}2=8$ and $\frac{15a}{16}+\frac{3b}{20}=6$. Solving for $b$ gives $b= \frac{80}{7}$, so the point $Q$ is $\left(\frac{80}7, \frac{24}7\right)$. The answer is twice the distance from $Q$ to $(8,6)$, which by the distance formula is $\frac{60}{7}$. Thus, the answer is $\boxed{067}$.

See also

2001 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions