# Difference between revisions of "2001 AIME I Problems/Problem 2"

## Problem

A finite set $\mathcal{S}$ of distinct real numbers has the following properties: the mean of $\mathcal{S}\cup\{1\}$ is $13$ less than the mean of $\mathcal{S}$, and the mean of $\mathcal{S}\cup\{2001\}$ is $27$ more than the mean of $\mathcal{S}$. Find the mean of $\mathcal{S}$.

## Solution

Let $x$ be the mean of $\mathcal{S}$. Let $a$ be the number of elements in $\mathcal{S}$. Then, the given tells us that $\frac{ax+1}{a+1}=x-13$ and $\frac{ax+2001}{a+1}=x+27$. Subtracting, we have \begin{align*}\frac{ax+2001}{a+1}-40=\frac{ax+1}{a+1} \Longrightarrow \frac{2000}{a+1}=40 \Longrightarrow a=49\end{align*} We plug that into our very first formula, and get: \begin{align*}\frac{49x+1}{50}&=x-13 \\ 49x+1&=50x-650 \\ x&=\boxed{651}.\end{align*}

## See Also

 2001 AIME I (Problems • Answer Key • Resources) Preceded byProblem 1 Followed byProblem 3 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. Invalid username
Login to AoPS