# Difference between revisions of "2001 AIME I Problems/Problem 3"

## Problem

Find the sum of the roots, real and non-real, of the equation $x^{2001}+\left(\frac 12-x\right)^{2001}=0$, given that there are no multiple roots.

## Solution 1

From Vieta's formulas, in a polynomial of the form $a_nx^n + a_{n-1}x^{n-1} + \cdots + a_0 = 0$, then the sum of the roots is $\frac{-a_{n-1}}{a_n}$.

From the Binomial Theorem, the first term of $\left(\frac 12-x\right)^{2001}$ is $-x^{2001}$, but $x^{2001}+-x^{2001}=0$, so the term with the largest degree is $x^{2000}$. So we need the coefficient of that term, as well as the coefficient of $x^{1999}$.

\begin{align*}\binom{2001}{1} \cdot (-x)^{2000} \cdot \left(\frac{1}{2}\right)^1&=\frac{2001x^{2000}}{2}\\ \binom{2001}{2} \cdot (-x)^{1999} \cdot \left(\frac{1}{2}\right)^2 &=\frac{-x^{1999}*2001*2000}{8}=-2001 \cdot 250x^{1999} \end{align*}

Applying Vieta's formulas, we find that the sum of the roots is $-\frac{-2001 \cdot 250}{\frac{2001}{2}}=250 \cdot 2=\boxed{500}$.

## Solution 2

We find that the given equation has a $2000th$ degree polynomial. Note that there are no multiple roots. Thus, if $\frac{1}{2} - x$ is a root, $x$ is also a root. Thus, we pair up $1000$ pairs of roots that sum to $\frac{1}{2}$ to get a sum of $/boxed{500}$.

## See also

 2001 AIME I (Problems • Answer Key • Resources) Preceded byProblem 2 Followed byProblem 4 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.

Invalid username
Login to AoPS