Difference between revisions of "2001 AMC 10 Problems/Problem 11"

(Solution 1)
(Solution 1)
Line 13: Line 13:
 
There are <math> 2(2n+1)+2(2n-1)=4n+2+4n-2=8n </math> unit squares in the <math> n^\text{th} </math> ring.
 
There are <math> 2(2n+1)+2(2n-1)=4n+2+4n-2=8n </math> unit squares in the <math> n^\text{th} </math> ring.
  
Thus, the <math>100^\text{th}</math> ring has <math> 8 \times 100 = \boxed{\textbf{(C)} 800} </math>.
+
Thus, the <math>100^\text{th}</math> ring has <math> 8 \times 100 = \boxed{\textbf{(C)} 800} </math> unit squares.
 +
 
 +
=== Solution 2 (Alternate Solution) ===
 +
 
 +
We can make the <math> n^\text{th} </math> ring by removing a square of side length <math> 2n-1 </math> from a square of side length <math> 2n+1 </math>.
 +
 
 +
This ring contains <math> (2n+1)^2-(2n-1)^2=(4n^2+4n+1)-(4n^2-4n+1)=8n </math> unit squares.
 +
 
 +
Thus, the <math> 100^\text{th} </math> ring has <math> 8 \times 100 = \boxed{\textbf{(C)}\ 800} </math> unit squares.

Revision as of 16:18, 16 March 2011

Problem

Consider the dark square in an array of unit squares, part of which is shown. The first ring of squares around this center square contains $8$ unit squares. The second ring contains $16$ unit squares. If we continue this process, the number of unit squares in the $100^\text{th}$ ring is

$\textbf{(A)}\ 396 \qquad \textbf{(B)}\ 404 \qquad \textbf{(C)}\ 800 \qquad \textbf{(D)}\ 10,\!000 \qquad \textbf{(E)}\ 10,\!404$

Solutions

Solution 1

We can partition the $n^\text{th}$ ring into $4$ rectangles: two containing $2n+1$ unit squares and two containing $2n-1$ unit squares.

There are $2(2n+1)+2(2n-1)=4n+2+4n-2=8n$ unit squares in the $n^\text{th}$ ring.

Thus, the $100^\text{th}$ ring has $8 \times 100 = \boxed{\textbf{(C)} 800}$ unit squares.

Solution 2 (Alternate Solution)

We can make the $n^\text{th}$ ring by removing a square of side length $2n-1$ from a square of side length $2n+1$.

This ring contains $(2n+1)^2-(2n-1)^2=(4n^2+4n+1)-(4n^2-4n+1)=8n$ unit squares.

Thus, the $100^\text{th}$ ring has $8 \times 100 = \boxed{\textbf{(C)}\ 800}$ unit squares.