Difference between revisions of "2001 AMC 10 Problems/Problem 11"

m (minor spacing fix)
m (fixed charater/spacing)
Line 1: Line 1:
 
==Problem==
 
==Problem==
 
+
Consider the dark square in an array of unit squares, part of which is shown. The first ring of squares around this center square contains <math>8</math> unit squares. The second ring contains <math>16</math> unit squares. If we continue this process, the number of unit squares in the <math>100^\text{th}</math> ring is
Consider the dark square in an array of unit squares, part of which is shown. The first ring of squares around this center square contains <math> 8 </math> unit squares. The second ring contains <math>16</math> unit squares. If we continue this process, the number of unit squares in the <math>100^\text{th}</math> ring is
 
 
<math>\textbf{(A)}\ 396 \qquad \textbf{(B)}\ 404 \qquad \textbf{(C)}\ 800 \qquad \textbf{(D)}\ 10,\!000 \qquad \textbf{(E)}\ 10,\!404</math>
 
<math>\textbf{(A)}\ 396 \qquad \textbf{(B)}\ 404 \qquad \textbf{(C)}\ 800 \qquad \textbf{(D)}\ 10,\!000 \qquad \textbf{(E)}\ 10,\!404</math>
  
Line 14: Line 13:
  
 
===Solution 2===
 
===Solution 2===
 
 
We can make the <math> n^\text{th} </math> ring by removing a square of side length <math> 2n-1 </math> from a square of side length <math> 2n+1 </math>.  
 
We can make the <math> n^\text{th} </math> ring by removing a square of side length <math> 2n-1 </math> from a square of side length <math> 2n+1 </math>.  
  

Revision as of 23:36, 16 March 2020

Problem

Consider the dark square in an array of unit squares, part of which is shown. The first ring of squares around this center square contains $8$ unit squares. The second ring contains $16$ unit squares. If we continue this process, the number of unit squares in the $100^\text{th}$ ring is $\textbf{(A)}\ 396 \qquad \textbf{(B)}\ 404 \qquad \textbf{(C)}\ 800 \qquad \textbf{(D)}\ 10,\!000 \qquad \textbf{(E)}\ 10,\!404$

Solution

Solution 1

We can partition the $n^\text{th}$ ring into $4$ rectangles: two containing $2n+1$ unit squares and two containing $2n-1$ unit squares.

There are $2(2n+1)+2(2n-1)=4n+2+4n-2=8n$ unit squares in the $n^\text{th}$ ring.

Thus, the $100^\text{th}$ ring has $8 \times 100 = \boxed{\textbf{(C)} 800}$ unit squares.

Solution 2

We can make the $n^\text{th}$ ring by removing a square of side length $2n-1$ from a square of side length $2n+1$.

This ring contains $(2n+1)^2-(2n-1)^2=(4n^2+4n+1)-(4n^2-4n+1)=8n$ unit squares.

Thus, the $100^\text{th}$ ring has $8 \times 100 = \boxed{\textbf{(C)}\ 800}$ unit squares.

See Also

2001 AMC 10 (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png