Difference between revisions of "2001 AMC 10 Problems/Problem 21"

(Created page with '==Problem== A right circular cylinder with its diameter equal to its height is inscribed in a right circular cone. The cone has diameter <math> 10 </math> and altitude <math> 12…')
 
m (Solution)
Line 6: Line 6:
  
 
==Solution==
 
==Solution==
 +
 +
<asy>
 +
draw((5,0)--(-5,0)--(0,12)--cycle);
 +
unitsize(.75cm);
 +
draw((-30/11,0)--(-30/11,60/11));
 +
draw((-30/11,60/11)--(30/11,60/11));
 +
draw((30/11,60/11)--(30/11,0));
 +
draw((0,0)--(0,12));
 +
label("$2r$",(0,30/11),E);
 +
label("$12-2r$",(0,80/11),E);
 +
label("$2r$",(0,60/11),S);
 +
label("$10$",(0,0),S);
 +
</asy>
 +
 +
 +
 +
 +
  
 
Let the diameter of the cylinder be <math> 2r </math>. Examining the cross section of the cone and cylinder, we find two similar triangles. Hence, <math> \frac{12-2r}{12}=\frac{2r}{10} </math> which we solve to find <math> r=\frac{30}{11} </math>. Our answer is <math> \boxed{\textbf{(B)}\ \frac{30}{11}} </math>.
 
Let the diameter of the cylinder be <math> 2r </math>. Examining the cross section of the cone and cylinder, we find two similar triangles. Hence, <math> \frac{12-2r}{12}=\frac{2r}{10} </math> which we solve to find <math> r=\frac{30}{11} </math>. Our answer is <math> \boxed{\textbf{(B)}\ \frac{30}{11}} </math>.

Revision as of 18:10, 26 August 2011

Problem

A right circular cylinder with its diameter equal to its height is inscribed in a right circular cone. The cone has diameter $10$ and altitude $12$, and the axes of the cylinder and cone coincide. Find the radius of the cylinder.

$\textbf{(A)}\ \frac{8}3\qquad\textbf{(B)}\ \frac{30}{11}\qquad\textbf{(C)}\ 3\qquad\textbf{(D)}\ \frac{25}{8}\qquad\textbf{(E)}\ \frac{7}{2}$

Solution

[asy] draw((5,0)--(-5,0)--(0,12)--cycle); unitsize(.75cm); draw((-30/11,0)--(-30/11,60/11)); draw((-30/11,60/11)--(30/11,60/11)); draw((30/11,60/11)--(30/11,0)); draw((0,0)--(0,12)); label("$2r$",(0,30/11),E); label("$12-2r$",(0,80/11),E); label("$2r$",(0,60/11),S); label("$10$",(0,0),S); [/asy]




Let the diameter of the cylinder be $2r$. Examining the cross section of the cone and cylinder, we find two similar triangles. Hence, $\frac{12-2r}{12}=\frac{2r}{10}$ which we solve to find $r=\frac{30}{11}$. Our answer is $\boxed{\textbf{(B)}\ \frac{30}{11}}$.

See Also

2001 AMC 10 (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions