Difference between revisions of "2001 AMC 10 Problems/Problem 6"

(Created page with '== Problem == Let <math> P(n) </math> and <math> S(n) </math> denote the product and the sum, respectively, of the digits of the integer <math> n </math>. For example, <math> P(…')
 
(See Also)
(10 intermediate revisions by 4 users not shown)
Line 1: Line 1:
 +
{{duplicate|[[2001 AMC 12 Problems|2001 AMC 12 #2]] and [[2001 AMC 10 Problems|2001 AMC 10 #6]]}}
 +
 
== Problem ==
 
== Problem ==
 +
Let <math>P(n)</math> and <math>S(n)</math> denote the product and the sum, respectively, of the digits
 +
of the integer <math>n</math>. For example, <math>P(23) = 6</math> and <math>S(23) = 5</math>. Suppose <math>N</math> is a
 +
two-digit number such that <math>N = P(N)+S(N)</math>. What is the units digit of <math>N</math>?
  
Let <math> P(n) </math> and <math> S(n) </math> denote the product and the sum, respectively, of the digits of the integer <math> n </math>. For example, <math> P(23) = 6 </math> and <math> S(23) = 5 </math>. Suppose <math> N </math> is a two-digit number such that <math> N = P(N) + S(N) </math>. What is the units digit of <math> N </math>?
+
<math>\textbf{(A)}\ 2\qquad \textbf{(B)}\ 3\qquad \textbf{(C)}\ 6\qquad \textbf{(D)}\ 8\qquad \textbf{(E)}\ 9</math>
 
 
<math> \textbf{(A) }2\qquad\textbf{(B) }3\qquad\textbf{(C) }6\qquad\textbf{(D) }8\qquad\textbf{(E) }9 </math>
 
  
 
== Solution ==
 
== Solution ==
 +
Denote <math>a</math> and <math>b</math> as the tens and units digit of <math>N</math>, respectively. Then <math>N = 10a+b</math>. It follows that <math>10a+b=ab+a+b</math>, which implies that <math>9a=ab</math>. Since <math>a\neq0</math>, <math>b=9</math>. So the units digit of <math>N</math> is <math>\boxed{(\text{E})\ 9}</math>.
  
Let <math> N=10a+b </math>. We want to find a number such that <math> ab+a+b=10a+b </math>.
+
== See Also ==
 
+
{{AMC10 box|year=2001|num-b=5|num-a=7}}
If we subtract the quantity <math> a+b </math> from both sides, we are left with
+
{{AMC12 box|year=2001|num-b=1|num-a=3}}
 
+
{{MAA Notice}}
<math> ab=9a </math>.
 
 
 
We can also divide both sides by a and we are left with
 
 
 
the units digits <math> b </math> is <math> \boxed{\textbf{(E) }9} </math>.
 

Revision as of 09:19, 20 August 2019

The following problem is from both the 2001 AMC 12 #2 and 2001 AMC 10 #6, so both problems redirect to this page.

Problem

Let $P(n)$ and $S(n)$ denote the product and the sum, respectively, of the digits of the integer $n$. For example, $P(23) = 6$ and $S(23) = 5$. Suppose $N$ is a two-digit number such that $N = P(N)+S(N)$. What is the units digit of $N$?

$\textbf{(A)}\ 2\qquad \textbf{(B)}\ 3\qquad \textbf{(C)}\ 6\qquad \textbf{(D)}\ 8\qquad \textbf{(E)}\ 9$

Solution

Denote $a$ and $b$ as the tens and units digit of $N$, respectively. Then $N = 10a+b$. It follows that $10a+b=ab+a+b$, which implies that $9a=ab$. Since $a\neq0$, $b=9$. So the units digit of $N$ is $\boxed{(\text{E})\ 9}$.

See Also

2001 AMC 10 (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2001 AMC 12 (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png