2001 IMO Problems/Problem 2

Revision as of 12:02, 17 September 2012 by 1=2 (talk | contribs) (See also)

Problem

Let $a,b,c$ be positive real numbers. Prove that $\frac{a}{\sqrt{a^{2}+8bc}}+\frac{b}{\sqrt{b^{2}+8ca}}+\frac{c}{\sqrt{c^{2}+8ab}}\ge 1$.

Solution

Solution using Holder's

By Holder's inequality, $\left(\sum\frac{a}{\sqrt{a^{2}+8bc}}\right)\left(\sum\frac{a}{\sqrt{a^{2}+8bc}}\right)\left(\sum a(a^{2}+8bc)\right)\ge (a+b+c)^{3}$ Thus we need only show that $(a+b+c)^{3}\ge a^{3}+b^{3}+c^{3}+24abc$ Which is obviously true since $(a+b)(b+c)(c+a)\ge 8abc$.

Alternate Solution using Jensen's

This inequality is homogeneous so we can assume without loss of generality $a+b+c=1$ and apply Jensen's inequality for $f(x)=\frac{1}{\sqrt{x}}$, so we get: \[\frac{a}{\sqrt{a^2+8bc}}+\frac{b}{\sqrt{b^2+8ac}}+\frac{c}{\sqrt{c^2+8ab}} \geq \frac{1}{\sqrt{a^3+b^3+c^3+24abc}}\] but \[1=(a+b+c)^3=a^3+b^3+c^3+6abc+3(a^2b+a^2c+b^2a+b^2c+c^2a+c^2b) \geq a^3+b^3+c^3+24abc\] by AMGM, and thus the inequality is proven.

Alternate Solution using Isolated Fudging

We claim that \[\frac{a}{\sqrt{a^2+8bc}} \geq \frac{a^{\frac{4}{3}}}{a^{\frac{4}{3}}+b^{\frac{4}{3}}+c^{\frac{4}{3}}}\] Cross-multiplying, squaring both sides and expanding, we have \[a^{\frac{14}{3}}+a^{2}b^{\frac{8}{3}}+a^{2}c^{\frac{8}{3}}+2a^{\frac{11}{3}}b^{\frac{4}{3}}+2a^{\frac{11}{3}}c^{\frac{4}{3}}+2a^{2}b^{\frac{4}{3}}c^{\frac{4}{3}} \geq a^{\frac{14}{3}}+8a^{\frac{8}{3}}bc\] After cancelling the $a^{\frac{14}{3}}$ term, we apply AM-GM to RHS and obtain \[a^{2}b^{\frac{8}{3}}+a^{2}c^{\frac{8}{3}}+2a^{\frac{11}{3}}b^{\frac{4}{3}}+2a^{\frac{11}{3}}c^{\frac{4}{3}}+2a^{2}b^{\frac{4}{3}}c^{\frac{4}{3}} \geq 8(a^{\frac{64}{3}}b^8c^8)^{\frac{1}{8}}=8a^{\frac{8}{3}}bc\] as desired, completing the proof of the claim.

Similarly $\frac{b}{\sqrt{b^2+8ca}} \geq \frac{b^{\frac{4}{3}}}{a^{\frac{4}{3}}+b^{\frac{4}{3}}+c^{\frac{4}{3}}}$ and $\frac{c}{\sqrt{c^2+8ab}} \geq \frac{c^{\frac{4}{3}}}{a^{\frac{4}{3}}+b^{\frac{4}{3}}+c^{\frac{4}{3}}}$. Summing the three inequalities, we obtain the original inequality.

See also

2001 IMO (Problems) • Resources
Preceded by
Problem 1
1 2 3 4 5 6 Followed by
Problem 3
All IMO Problems and Solutions