Difference between revisions of "2002 AIME II Problems"

(Added problem 12 (previous should have said 13 and 14))
m (Problem 14)
Line 57: Line 57:
  
 
== Problem 14 ==
 
== Problem 14 ==
The perimeter of triangle <math>APM</math> is <math>152</math> and the angle <math>PAM</math> is a right angle. A circle of radius <math>19</math> with center <math>O</math> on <math>\overline{AP}</math> is drawn so that it is tangent to <math>\overline{AM}</math> and <math>\overline{PM}.</math> Given that <math>OP=m/n</math> where <math>m</math> and <math>n</math> are relatively prime positive integers, find <math>m+n</math>.
+
The perimeter of triangle <math>APM</math> is <math>152</math>, and the angle <math>PAM</math> is a right angle. A circle of radius <math>19</math> with center <math>O</math> on <math>\overline{AP}</math> is drawn so that it is tangent to <math>\overline{AM}</math> and <math>\overline{PM}</math>. Given that <math>OP=m/n</math> where <math>m</math> and <math>n</math> are relatively prime positive integers, find <math>m+n</math>.
  
 
[[2002 AIME II Problems/Problem 14|Solution]]
 
[[2002 AIME II Problems/Problem 14|Solution]]

Revision as of 13:56, 19 April 2008

Problem 1

Many states use a sequence of three letters followed by a sequence of three digits as their standard license-plate pattern. Given that each three-letter three-digit arrangement is equally likely, the probability that such a license plate will contain at least one palindrome (a three-letter arrangement or a three-digit arrangement that reads the same left-to-right as it does right-to-left) is $m/n$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

Solution

Problem 2

Three vertices of a cube are $P=(7,12,10)$, $Q=(8,8,1)$, and $R=(11,3,9)$. What is the surface area of the cube?

Solution

Problem 3

It is given that $\log_{6}a + \log_{6}b + \log_{6}c = 6,$ where $a,$ $b,$ and $c$ are positive integers that form an increasing geometric sequence and $b - a$ is the square of an integer. Find $a + b + c.$

Solution

Problem 4

Solution

Problem 5

Solution

Problem 6

Solution

Problem 7

Solution

Problem 8

Solution

Problem 9

Solution

Problem 10

Solution

Problem 11

Solution

Problem 12

A basketball player has a constant probability of $.4$ of making any given shot, independent of previous shots. Let $a_n$ be the ratio of shots made to shots attempted after $n$ shots. The probability that $a_{10}\le.4$ and $a_n\le.4$ for all $n$ such that $1\le n\le9$ is given to be $p^aq^br/\left(s^c\right)$ where $p$, $q$, $r$, and $s$ are primes, and $a$, $b$, and $c$ are positive integers. Find $\left(p+q+r+s\right)\left(a+b+c\right)$.

Solution

Problem 13

In triangle $ABC$, point $D$ is on $\overline{BC}$ with $CD=2$ and $DB=5$, point $E$ is on $\overline{AC}$ with $CE=1$ and $EA=32$, $AB=8$, and $\overline{AD}$ and $\overline{BE}$ intersect at $P$. Points $Q$ and $R$ lie on $\overline{AB}$ so that $\overline{PQ}$ is parallel to $\overline{CA}$ and $\overline{PR}$ is parallel to $\overline{CB}$. It is given that the ratio of the area of triangle $PQR$ to the area of triangle $ABC$ is $m/n$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

Solution

Problem 14

The perimeter of triangle $APM$ is $152$, and the angle $PAM$ is a right angle. A circle of radius $19$ with center $O$ on $\overline{AP}$ is drawn so that it is tangent to $\overline{AM}$ and $\overline{PM}$. Given that $OP=m/n$ where $m$ and $n$ are relatively prime positive integers, find $m+n$.

Solution

Problem 15

Circles $\mathcal{C}_{1}$ and $\mathcal{C}_{2}$ intersect at two points, one of which is $(9,6)$, and the product of the radii is $68$. The x-axis and the line $y = mx$, where $m > 0$, are tangent to both circles. It is given that $m$ can be written in the form $a\sqrt {b}/c$, where $a$, $b$, and $c$ are positive integers, $b$ is not divisible by the square of any prime, and $a$ and $c$ are relatively prime. Find $a + b + c$.

Solution

See also