# 2002 AIME II Problems/Problem 6

## Problem

Find the integer that is closest to $1000\sum_{n=3}^{10000}\frac1{n^2-4}$.

## Solution

You know that $\frac{4}{n^2 - 4} = \frac{1}{n-2} - \frac{1}{n + 2}$.

So if you pull the $\frac{1}{4}$ out of the summation, you get

$250\sum_{n=3}^{10,000} (\frac{1}{n-2} - \frac{1}{n + 2})$.

Now that telescopes, leaving you with:

$250 (1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} - \frac{1}{9997} - \frac{1}{9998} - \frac{1}{9999} - \frac{1}{10000}) = 250 + 125 + 83.3 + 62.5 - 250 (- \frac{1}{9997} - \frac{1}{9998} - \frac{1}{9999} - \frac{1}{10000})$

$250(-\frac{1}{9997} - \frac{1}{9998} - \frac{1}{9999} - \frac{1}{10000})$ is not enough to bring $520.8$ lower than $520.5$ so the answer is $\fbox{521}$

If you didn't know $\frac{4}{n^2 - 4} = \frac{1}{n-2} - \frac{1}{n + 2}$, here's how you can find it out:

We know $\frac{1}{n^2 - 4} = \frac{1}{(n+2)(n-2)}$. We can use the process of fractional decomposition to split this into two fractions thus: $\frac{1}{(n+2)(n-2)} = \frac{A}{(n+2)} + \frac{B}{(n+2)}$ for some A and B.

Solving for A and B gives $\1 = (n-2)A + (n+2)B$ (Error compiling LaTeX. ! Undefined control sequence.) or $\1 = n(A+B)+ 2(B-A)$ (Error compiling LaTeX. ! Undefined control sequence.). Since there is no n term on the left hand side, $\ A+B=0$ and by inspection $\1 = 2(B-A)$ (Error compiling LaTeX. ! Undefined control sequence.). Solving yields $\A=frac{1}{4} B=frac{-1}{4}$ (Error compiling LaTeX. ! Undefined control sequence.)

Then we have $\ frac{1}{(n+2)(n-2)} = \ frac{ frac{1}{4} }{(n+2)} + \ frac{ frac{-1}{4} }{(n+2)}$ and we can continue as before.

## See also

 2002 AIME II (Problems • Answer Key • Resources) Preceded byProblem 5 Followed byProblem 7 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 All AIME Problems and Solutions
Invalid username
Login to AoPS