Difference between revisions of "2002 AIME I Problems/Problem 1"

m
(explanation)
Line 3: Line 3:
  
 
== Solution ==
 
== Solution ==
The [[Principle of Inclusion-Exclusion]] can be used to solve this problem:
+
Consider the three-digit arrangement, <math>\overline{aba}</math>. There are <math>10</math> choices for <math>a</math> and <math>10</math> choices for <math>b</math> (since it is possible for <math>a=b</math>), and so the probability of picking the palindrome is <math>\frac{10 \times 10}{10^3} = \frac 1{10}</math>. Similarly, there is a <math>\frac 1{26}</math> probability of picking the three-letter palindrome. 
  
<math>\frac{1}{26}+\frac{1}{10}-\frac{1}{260}=\frac{35}{260}=\frac{7}{52}\quad\Longrightarrow\quad7+52=\boxed{059}</math>
+
By the [[Principle of Inclusion-Exclusion]], the total probability is
 +
<center><math>\frac{1}{26}+\frac{1}{10}-\frac{1}{260}=\frac{35}{260}=\frac{7}{52}\quad\Longrightarrow\quad7+52=\boxed{059}</math></center>
  
 
== See also ==
 
== See also ==
 
{{AIME box|year=2002|n=I|before=First Question|num-a=2}}
 
{{AIME box|year=2002|n=I|before=First Question|num-a=2}}
 +
 +
[[Category:Intermediate Combinatorics Problems]]
 +
[[Category:Intermediate Probability Problems]]

Revision as of 22:32, 24 April 2008

Problem

Many states use a sequence of three letters followed by a sequence of three digits as their standard license-plate pattern. Given that each three-letter three-digit arrangement is equally likely, the probability that such a license plate will contain at least one palindrome (a three-letter arrangement or a three-digit arrangement that reads the same left-to-right as it does right-to-left) is $\dfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$

Solution

Consider the three-digit arrangement, $\overline{aba}$. There are $10$ choices for $a$ and $10$ choices for $b$ (since it is possible for $a=b$), and so the probability of picking the palindrome is $\frac{10 \times 10}{10^3} = \frac 1{10}$. Similarly, there is a $\frac 1{26}$ probability of picking the three-letter palindrome.

By the Principle of Inclusion-Exclusion, the total probability is

$\frac{1}{26}+\frac{1}{10}-\frac{1}{260}=\frac{35}{260}=\frac{7}{52}\quad\Longrightarrow\quad7+52=\boxed{059}$

See also

2002 AIME I (ProblemsAnswer KeyResources)
Preceded by
First Question
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions