Difference between revisions of "2002 AIME I Problems/Problem 13"

(Solution 2)
(Solution 2)
Line 24: Line 24:
 
</center>
 
</center>
 
Hence <math>\sin \angle AEC = \sqrt{1 - \cos^2 \angle AEC} = \frac{\sqrt{55}}{8}</math>. Because <math>\triangle AEF, BEF</math> have the same height and equal bases, they have the same area, and <math>[ABF] = 2[AEF] = 2 \cdot \frac 12 \cdot AE \cdot EF \sin \angle AEF = 12 \cdot \frac{16}{3} \cdot \frac{\sqrt{55}}{8} = 8\sqrt{55}</math>, and the answer is <math>8 + 55 = \boxed{063}</math>.
 
Hence <math>\sin \angle AEC = \sqrt{1 - \cos^2 \angle AEC} = \frac{\sqrt{55}}{8}</math>. Because <math>\triangle AEF, BEF</math> have the same height and equal bases, they have the same area, and <math>[ABF] = 2[AEF] = 2 \cdot \frac 12 \cdot AE \cdot EF \sin \angle AEF = 12 \cdot \frac{16}{3} \cdot \frac{\sqrt{55}}{8} = 8\sqrt{55}</math>, and the answer is <math>8 + 55 = \boxed{063}</math>.
 +
 +
== Solution 2 ==
  
 
== Solution 2 ==
 
== Solution 2 ==
Line 37: Line 39:
 
<cmath>\begin{align*}
 
<cmath>\begin{align*}
 
[APE] = \frac{27\sqrt{55}}{4}
 
[APE] = \frac{27\sqrt{55}}{4}
\end{align*}</cmath>
 
</center>
 
Since <math>P</math> is the centroid, we have that
 
<center>
 
<cmath>\begin{align*}
 
[CBE] = 3 [APE] = \frac{81\sqrt{55}}{4}
 
 
\end{align*}</cmath>
 
\end{align*}</cmath>
 
</center>
 
</center>
Line 54: Line 50:
 
<center>
 
<center>
 
<cmath>\begin{align*}
 
<cmath>\begin{align*}
\frac{[EFB]}{[CBE]}=\frac{[EFB]}{(\frac{81\sqrt{55}}{4})}=\frac{(\frac{16}{3})}{27}=\frac{16}{81}
+
\frac{[AFE]}{[APE]}=\frac{[AFE]}{(\frac{27\sqrt{55}}{4})}=\frac{PE}{EF}=\frac{(\frac{16}{3})}{9}=\frac{16}{27}
 
\end{align*}</cmath>
 
\end{align*}</cmath>
 
</center>
 
</center>
Line 60: Line 56:
 
<center>
 
<center>
 
<cmath>\begin{align*}
 
<cmath>\begin{align*}
[EFB] = 4\sqrt{55}
+
[AFE] = 4\sqrt{55}
 
\end{align*}</cmath>
 
\end{align*}</cmath>
 
</center>
 
</center>
Line 66: Line 62:
 
<center>
 
<center>
 
<cmath>\begin{align*}
 
<cmath>\begin{align*}
[AFB]=2[EFB]=8\sqrt{55}
+
[AFB]=2[AFE]=8\sqrt{55}
 
\end{align*}</cmath>
 
\end{align*}</cmath>
 
</center>
 
</center>

Revision as of 23:23, 7 March 2013

Problem

In triangle $ABC$ the medians $\overline{AD}$ and $\overline{CE}$ have lengths $18$ and $27$, respectively, and $AB=24$. Extend $\overline{CE}$ to intersect the circumcircle of $ABC$ at $F$. The area of triangle $AFB$ is $m\sqrt{n}$, where $m$ and $n$ are positive integers and $n$ is not divisible by the square of any prime. Find $m+n$.

Solution 1

[asy] size(150); pathpen = linewidth(0.7); pointpen = black; pen f = fontsize(8); pair A=(0,0), B=(24,0), E=(A+B)/2, C=IP(CR(A,3*70^.5),CR(E,27)), D=(B+C)/2, F=IP(circumcircle(A,B,C),E--C+2*(E-C)); D(D(MP("A",A))--D(MP("B",B))--D(MP("C",C,NW))--cycle); D(circumcircle(A,B,C)); D(MP("F",F)); D(A--D); D(C--F); D(A--F--B); D(MP("E",E,NE)); D(MP("D",D,NE)); MP("12",(A+E)/2,SE,f);MP("12",(B+E)/2,f); MP("27",(C+E)/2,SW,f); MP("18",(A+D)/2,SE,f); [/asy]

Applying Stewart's Theorem to medians $AD, CE$, we have:

\begin{align*} BC^2 + 4 \cdot 18^2 &= 2\left(24^2 + AC^2\right) \\ 24^2 + 4 \cdot 27^2 &= 2\left(AC^2 + BC^2\right)  \end{align*}

Substituting the first equation into the second and simplification yields $24^2 = 2\left(3AC^2 + 2 \cdot 24^2 - 4 \cdot 18^2\right)- 4 \cdot 27^2$ $\Longrightarrow AC = \sqrt{2^5 \cdot 3 + 2 \cdot 3^5 + 2^4 \cdot 3^3 - 2^7 \cdot 3} = 3\sqrt{70}$.

By the Power of a Point Theorem on $E$, we get $EF = \frac{12^2}{27} = \frac{16}{3}$. The Law of Cosines on $\triangle ACE$ gives

\begin{align*} \cos \angle AEC = \left(\frac{12^2 + 27^2 - 9 \cdot 70}{2 \cdot 12 \cdot 27}\right) = \frac{3}{8} \end{align*}

Hence $\sin \angle AEC = \sqrt{1 - \cos^2 \angle AEC} = \frac{\sqrt{55}}{8}$. Because $\triangle AEF, BEF$ have the same height and equal bases, they have the same area, and $[ABF] = 2[AEF] = 2 \cdot \frac 12 \cdot AE \cdot EF \sin \angle AEF = 12 \cdot \frac{16}{3} \cdot \frac{\sqrt{55}}{8} = 8\sqrt{55}$, and the answer is $8 + 55 = \boxed{063}$.

Solution 2

Solution 2

Let $AD$ and $CE$ intersect at $P$. Since medians split one another in a 2:1 ratio, we have

\begin{align*} AP = 12, PE = 9 \end{align*}

This gives isosceles $APE$ and thus an easy area calculation. After extending the altitude to $PE$ and using the fact that it is also a median, we find

\begin{align*} [APE] = \frac{27\sqrt{55}}{4} \end{align*}

Using Power of a Point, we have

\begin{align*} EF=\frac{16}{3} \end{align*}

By Same Height Different Base,

\begin{align*} \frac{[AFE]}{[APE]}=\frac{[AFE]}{(\frac{27\sqrt{55}}{4})}=\frac{PE}{EF}=\frac{(\frac{16}{3})}{9}=\frac{16}{27} \end{align*}

Solving gives

\begin{align*} [AFE] = 4\sqrt{55} \end{align*}

and

\begin{align*} [AFB]=2[AFE]=8\sqrt{55} \end{align*}

Thus, our answer is $8+55=\boxed{063}$.

-Solution by thecmd999

See also

2002 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions