2002 AIME I Problems/Problem 6

Revision as of 13:08, 6 March 2011 by Andrewjjiang97 (talk | contribs) (Solution)

Problem

The solutions to the system of equations

$\log_{225}x+\log_{64}y=4$
$\log_{x}225-\log_{y}64=1$

are $(x_1,y_1)$ and $(x_2,y_2)$. Find $\log_{30}\left(x_1y_1x_2y_2\right)$.

Solution

Let $A=\log_{225}x$ and let $B=\log_{64}y$.

From the first equation: $A+B=4 \Rightarrow B = 4-A$.

Plugging this into the second equation yields $\frac{1}{A}-\frac{1}{B}=\frac{1}{A}-\frac{1}{4-A}=1 \Rightarrow A = 3\pm\sqrt{5}$ and thus, $B=1\mp\sqrt{5}$.

So, $\log_{225}(x_1x_2)=\log_{225}(x_1)+\log_{225}(x_2)=(3+\sqrt{5})+(3-\sqrt{5})=6$ $\Rightarrow x_1x_2=225^6=15^{12}$.

And $\log_{64}(y_1y_2)=\log_{64}(y_1)+\log_{64}(y_2)=(1+\sqrt{5})+(1-\sqrt{5})=2$ $\Rightarrow y_1y_2=64^2=2^{12}$.

Thus, $\log_{30}\left(x_1y_1x_2y_2\right) = \log_{30}\left(15^{12}\cdot2^{12} \right) = \log_{30}\left(30^{12} \right) = \boxed{012}$.


One may simplify the work by applying Vieta's formulas to directly find that $\log x_1 + \log x_2 = 6 \log 225, \log y_1 + \log y_2 = 2 \log 64$.

See also

2002 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions