Difference between revisions of "2002 AMC 10A Problems/Problem 20"

m (Solution)
(Solution)
Line 5: Line 5:
  
 
==Solution==
 
==Solution==
 +
Solution #1:
 +
Since <math>AG</math> and <math>CH</math> are parallel, triangles <math>GAD</math> and <math>HCD</math> are similar. Hence, <math>CH/AG = CD/AD = 1/3</math>.
 +
 +
Since <math>AG</math> and <math>JE</math> are parallel, triangles <math>GAF</math> and <math>JEF</math> are similar. Hence, <math>EJ/AG = EF/AF = 1/5</math>. Therefore, <math>CH/EJ = (CH/AG)/(EJ/AG) = (1/3)/(1/5) = \boxed{5/3}</math>. The answer is (D).
 +
 +
Solution #2:
 
As <math>\overline{JE}</math> is parallel to <math>\overline{AG}</math>, angles FJE and FGA are congruent. Also, angle F is clearly congruent to itself. From AA similarity, <math>\triangle AGF \sim \triangle EJF</math>; hence <math>\frac {AG}{JE} =5</math>. Similarly, <math>\frac {AG}{HC} = 3</math>. Thus, <math>\frac {HC}{JE} = \boxed{\frac {5}{3}\Rightarrow \text{(D)}}</math>.
 
As <math>\overline{JE}</math> is parallel to <math>\overline{AG}</math>, angles FJE and FGA are congruent. Also, angle F is clearly congruent to itself. From AA similarity, <math>\triangle AGF \sim \triangle EJF</math>; hence <math>\frac {AG}{JE} =5</math>. Similarly, <math>\frac {AG}{HC} = 3</math>. Thus, <math>\frac {HC}{JE} = \boxed{\frac {5}{3}\Rightarrow \text{(D)}}</math>.
  

Revision as of 17:02, 20 July 2015

Problem

Points $A,B,C,D,E$ and $F$ lie, in that order, on $\overline{AF}$, dividing it into five segments, each of length 1. Point $G$ is not on line $AF$. Point $H$ lies on $\overline{GD}$, and point $J$ lies on $\overline{GF}$. The line segments $\overline{HC}, \overline{JE},$ and $\overline{AG}$ are parallel. Find $HC/JE$.

$\text{(A)}\ 5/4 \qquad \text{(B)}\ 4/3 \qquad \text{(C)}\ 3/2 \qquad \text{(D)}\ 5/3 \qquad \text{(E)}\ 2$

Solution

Solution #1: Since $AG$ and $CH$ are parallel, triangles $GAD$ and $HCD$ are similar. Hence, $CH/AG = CD/AD = 1/3$.

Since $AG$ and $JE$ are parallel, triangles $GAF$ and $JEF$ are similar. Hence, $EJ/AG = EF/AF = 1/5$. Therefore, $CH/EJ = (CH/AG)/(EJ/AG) = (1/3)/(1/5) = \boxed{5/3}$. The answer is (D).

Solution #2: As $\overline{JE}$ is parallel to $\overline{AG}$, angles FJE and FGA are congruent. Also, angle F is clearly congruent to itself. From AA similarity, $\triangle AGF \sim \triangle EJF$; hence $\frac {AG}{JE} =5$. Similarly, $\frac {AG}{HC} = 3$. Thus, $\frac {HC}{JE} = \boxed{\frac {5}{3}\Rightarrow \text{(D)}}$.

See Also

2002 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS