Difference between revisions of "2002 AMC 10B Problems/Problem 17"

(New page: 17. A regular octagon <math>ABCDEFGH</math> has sides of length two. Find the area of <math>\triangle ADG</math>. <math>\textbf{(A) } 4 + 2\sqrt2 \qquad \textbf{(B) } 6 + \sqrt2\qquad \t...)
 
m (added proper templates only)
Line 1: Line 1:
17. A regular octagon <math>ABCDEFGH</math> has sides of length two.  Find the area of <math>\triangle ADG</math>.
+
== Problem ==
 +
 
 +
A regular octagon <math>ABCDEFGH</math> has sides of length two.  Find the area of <math>\triangle ADG</math>.
  
 
<math>\textbf{(A) } 4 + 2\sqrt2 \qquad \textbf{(B) } 6 + \sqrt2\qquad \textbf{(C) } 4 + 3\sqrt2 \qquad \textbf{(D) } 3 + 4\sqrt2 \qquad \textbf{(E) } 8 + \sqrt2</math>
 
<math>\textbf{(A) } 4 + 2\sqrt2 \qquad \textbf{(B) } 6 + \sqrt2\qquad \textbf{(C) } 4 + 3\sqrt2 \qquad \textbf{(D) } 3 + 4\sqrt2 \qquad \textbf{(E) } 8 + \sqrt2</math>
 +
 +
== Solution ==
 +
 +
{{solution}}
 +
 +
== See Also ==
 +
 +
{{AMC10 box|year=2002|ab=B|num-b=16|num-a=18}}

Revision as of 07:41, 2 February 2009

Problem

A regular octagon $ABCDEFGH$ has sides of length two. Find the area of $\triangle ADG$.

$\textbf{(A) } 4 + 2\sqrt2 \qquad \textbf{(B) } 6 + \sqrt2\qquad \textbf{(C) } 4 + 3\sqrt2 \qquad \textbf{(D) } 3 + 4\sqrt2 \qquad \textbf{(E) } 8 + \sqrt2$

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See Also

2002 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
Invalid username
Login to AoPS