Difference between revisions of "2002 AMC 10B Problems/Problem 23"

(Created page with "== Problem 23 == Let <math>\{a_k\}</math> be a sequence of integers such that <math>a_1=1</math> and <math>a_{m+n}=a_m+a_n+mn,</math> for all positive integers <math>m</math> an...")
 
(added See also section and AMC10 box)
Line 26: Line 26:
 
<cmath>a_6 = 2a_2+15 = 6+15 = 21</cmath>
 
<cmath>a_6 = 2a_2+15 = 6+15 = 21</cmath>
 
<cmath>a_{12} = a_{6+6} = a_6+a_6+36 = 21+21+36 = \boxed{\mathrm{(D) \ } 78}</cmath>
 
<cmath>a_{12} = a_{6+6} = a_6+a_6+36 = 21+21+36 = \boxed{\mathrm{(D) \ } 78}</cmath>
 +
 +
== See also ==
 +
{{AMC10 box|year=2002|ab=B|num-b=21|num-a=23}}

Revision as of 19:24, 28 December 2011

Problem 23

Let $\{a_k\}$ be a sequence of integers such that $a_1=1$ and $a_{m+n}=a_m+a_n+mn,$ for all positive integers $m$ and $n.$ Then $a_{12}$ is

$\mathrm{(A) \ } 45\qquad \mathrm{(B) \ } 56\qquad \mathrm{(C) \ } 67\qquad \mathrm{(D) \ } 78\qquad \mathrm{(E) \ } 89$

Solution

First of all, write $a_3$ and $a_4$ in terms of $a_2.$ \begin{align*} a_3 &= a_{1+2} = 1 + a_2 + 2 = a_2 + 3\\ a_4 &= a_{2+2} = a_2 + a_2 + 4 = 2a_2 + 4 \end{align*}

$a_6$ can be represented by $a_2$ in $2$ different ways.

\begin{align*} a_{2+4} &= a_2 + a_4 + 8 = a_2 + 2a_2 + 4 + 8 = 3a_2 + 12\\ a_{3+3} &= 2a_3 + 9 = 6 + 2a_2 + 9 = 2a_2 + 15\\ \end{align*}

Since both are equal to $a_6,$ you can set them equal to each other.

\begin{align*} 3a_2 + 12 &= 2a_2 + 15\\ a_2 &= 3 \end{align*}

Substitute the value of $a_2$ back into $a_6,$ and substitute that into $a_{12}.$

\[a_6 = 2a_2+15 = 6+15 = 21\] \[a_{12} = a_{6+6} = a_6+a_6+36 = 21+21+36 = \boxed{\mathrm{(D) \ } 78}\]

See also

2002 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions