# 2002 AMC 10B Problems/Problem 24

## Problem 24

Riders on a Ferris wheel travel in a circle in a vertical plane. A particular wheel has radius $20$ feet and revolves at the constant rate of one revolution per minute. How many seconds does it take a rider to travel from the bottom of the wheel to a point $10$ vertical feet above the bottom?

$\mathrm{(A) \ } 5\qquad \mathrm{(B) \ } 6\qquad \mathrm{(C) \ } 7.5\qquad \mathrm{(D) \ } 10\qquad \mathrm{(E) \ } 15$

## Solution

$[asy] unitsize(1.5mm); defaultpen(linewidth(.8pt)+fontsize(10pt)); dotfactor=4; pair O=(0,0), A=(0,-20), B=(0,-10), C=(10sqrt(3),-10); real r=20; path ferriswheel=Circle(O,r); draw(ferriswheel); draw(O--A); draw(O--C); draw(B--C); pair[] ps={A,B,C,O}; dot(ps); label("O",O,N); label("A",A,S); label("B",B,W); label("C",C,SE); label("10",(O--B),W); label("10",(A--B),W); label("20",(O--C),NE); [/asy]$

We can let this circle represent the ferris wheel with center $O,$ and $C$ represent the desired point $10$ feet above the bottom. Draw a diagram like the one above. We find out $\triangle OBC$ is a $30-60-90$ triangle. That means $\angle BOC = 60^\circ$ and the ferris wheel has made $\frac{60}{360} = \frac{1}{6}$ of a revolution. Therefore, the time it takes to travel that much of a distance is $\frac{1}{6}\text{th}$ of a minute, or $10$ seconds. The answer is $\boxed{\mathrm{(D) \ } 10}$

 2002 AMC 10B (Problems • Answer Key • Resources) Preceded byProblem 23 Followed byProblem 25 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 All AMC 10 Problems and Solutions