Difference between revisions of "2002 AMC 12A Problems/Problem 1"

(Solution)
Line 1: Line 1:
 +
{{duplicate|[[2002 AMC 12A Problems|2009 AMC 12A #1]] and [[2002 AMC 10A Problems|2009 AMC 10A #10]]}}
 +
 
== Problem ==
 
== Problem ==
 
Compute the sum of all the roots of
 
Compute the sum of all the roots of
Line 5: Line 7:
 
<math> \mathrm{(A) \ } \frac{7}{2}\qquad \mathrm{(B) \ } 4\qquad \mathrm{(C) \ } 5\qquad \mathrm{(D) \ } 7\qquad \mathrm{(E) \ } 13 </math>
 
<math> \mathrm{(A) \ } \frac{7}{2}\qquad \mathrm{(B) \ } 4\qquad \mathrm{(C) \ } 5\qquad \mathrm{(D) \ } 7\qquad \mathrm{(E) \ } 13 </math>
 
== Solution ==
 
== Solution ==
That is equal to <math>(2x+3)(2x-10)=0</math>
+
===Solution 1===
 
+
We expand to get <math>2x^2-8x+3x-12+2x^2-12x+3x-18=0</math> which is <math>4x^2-14x-30=0</math> after combining like terms. Using the quadratic part of [[Vieta's Formulas]], we find the sum of the roots is <math>\frac{14}4 = \boxed{\text{(A)}\ 7/2}</math>.
We can divide out by 4 to get
 
 
 
<math>(x+\frac{3}{2})(x-5)=0</math>
 
 
 
The sum of the roots is therefore
 
  
<math>5-\dfrac{3}{2}=\dfrac{7}{2} \Rightarrow \mathrm {(A)}</math>
+
===Solution 2===
 +
Combine terms to get <math>(2x+3)\cdot\Big( (x-4)+(x-6) \Big) = (2x+3)(2x-10)=0</math>, hence the roots are <math>-\frac{3}{2}</math> and <math>5</math>, thus our answer is <math>-\frac{3}{2}+5=\boxed{\text{(A)}\ 7/2}</math>.
  
 
== See also ==
 
== See also ==
 
{{AMC12 box|year=2002|ab=A|before=First Question|num-a=2}}
 
{{AMC12 box|year=2002|ab=A|before=First Question|num-a=2}}
 +
{{AMC10 box|year=2002|ab=A|num-b=9|num-a=11}}

Revision as of 07:48, 18 February 2009

The following problem is from both the 2009 AMC 12A #1 and 2009 AMC 10A #10, so both problems redirect to this page.

Problem

Compute the sum of all the roots of $(2x+3)(x-4)+(2x+3)(x-6)=0$

$\mathrm{(A) \ } \frac{7}{2}\qquad \mathrm{(B) \ } 4\qquad \mathrm{(C) \ } 5\qquad \mathrm{(D) \ } 7\qquad \mathrm{(E) \ } 13$

Solution

Solution 1

We expand to get $2x^2-8x+3x-12+2x^2-12x+3x-18=0$ which is $4x^2-14x-30=0$ after combining like terms. Using the quadratic part of Vieta's Formulas, we find the sum of the roots is $\frac{14}4 = \boxed{\text{(A)}\ 7/2}$.

Solution 2

Combine terms to get $(2x+3)\cdot\Big( (x-4)+(x-6) \Big) = (2x+3)(2x-10)=0$, hence the roots are $-\frac{3}{2}$ and $5$, thus our answer is $-\frac{3}{2}+5=\boxed{\text{(A)}\ 7/2}$.

See also

2002 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
First Question
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions
2002 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions