2002 AMC 12B Problems
Problem
The arithmetic mean of the nine numbers in the set is a
-digit number
, all of whose digits are distinct. The number
does not contain the digit
Problem
What is the value of
when ?
Problem
For how many positive integers is
a prime number?
Problem
Let be a positive integer such that
is an integer. Which of the following statements is not true:
Problem
Let and
be the degree measures of the five angles of a pentagon. Suppose that $$ (Error compiling LaTeX. ! Missing $ inserted.)v < w < x < y < z
v, w, x, y,
z
x
\mathrm{(A)}\ 72
\qquad\mathrm{(B)}\ 84
\qquad\mathrm{(C)}\ 90
\qquad\mathrm{(D)}\ 108
\qquad\mathrm{(E)}\ 120
a
b
x^2 + ax + b = 0
a
b
(a,b)
\mathrm{(A)}\ (-2,1)
\qquad\mathrm{(B)}\ (-1,2)
\qquad\mathrm{(C)}\ (1,-2)
\qquad\mathrm{(D)}\ (2,-1)
\qquad\mathrm{(E)}\ (4,4)
8
\mathrm{(A)}\ 50
\qquad\mathrm{(B)}\ 77
\qquad\mathrm{(C)}\ 110
\qquad\mathrm{(D)}\ 149
\qquad\mathrm{(E)}\ 194
N
N
\mathrm{(A)}\ \text{Monday}
\qquad\mathrm{(B)}\ \text{Tuesday}
\qquad\mathrm{(C)}\ \text{Wednesday}
\qquad\mathrm{(D)}\ \text{Thursday}
\qquad\mathrm{(E)}\ \text{Friday}
a,b,c,d
a,b,c,d
a,b,d
\frac ad
\mathrm{(A)}\ \frac 1{12}
\qquad\mathrm{(B)}\ \frac 16
\qquad\mathrm{(C)}\ \frac 14
\qquad\mathrm{(D)}\ \frac 13
\qquad\mathrm{(E)}\ \frac 12
\{1,4,7,10,13,16,19\}
\mathrm{(A)}\ 13
\qquad\mathrm{(B)}\ 16
\qquad\mathrm{(C)}\ 24
\qquad\mathrm{(D)}\ 30
\qquad\mathrm{(E)}\ 35
A, B, A-B,
A+B
\mathrm{(A)}\ \mathrm{even}
\qquad\mathrm{(B)}\ \mathrm{divisible\ by\ }3
\qquad\mathrm{(C)}\ \mathrm{divisible\ by\ }5
\qquad\mathrm{(D)}\ \mathrm{divisible\ by\ }7
\qquad\mathrm{(E)}\ \mathrm{prime}
n
\dfrac n{20-n}
\mathrm{(A)}\ 1
\qquad\mathrm{(B)}\ 2
\qquad\mathrm{(C)}\ 3
\qquad\mathrm{(D)}\ 4
\qquad\mathrm{(E)}\ 10
18
\mathrm{(A)}\ 169
\qquad\mathrm{(B)}\ 225
\qquad\mathrm{(C)}\ 289
\qquad\mathrm{(D)}\ 361
\qquad\mathrm{(E)}\ 441
\mathrm{(A)}\ 8
\qquad\mathrm{(B)}\ 9
\qquad\mathrm{(C)}\ 10
\qquad\mathrm{(D)}\ 12
\qquad\mathrm{(E)}\ 16
N
N
\mathrm{(A)}\ 4
\qquad\mathrm{(B)}\ 5
\qquad\mathrm{(C)}\ 6
\qquad\mathrm{(D)}\ 7
\qquad\mathrm{(E)}\ 8
1
8
\mathrm{(A)}\ \frac1{12}
\qquad\mathrm{(B)}\ \frac 13
\qquad\mathrm{(C)}\ \frac 12
\qquad\mathrm{(D)}\ \frac 7{12}
\qquad\mathrm{(E)}\ \frac 23
\mathrm{(A)}\ \text{Andy}
\qquad\mathrm{(B)}\ \text{Beth}
\qquad\mathrm{(C)}\ \text{Carlos}
\qquad\mathrm{(D)}\ \text{Andy\ and \ Carlos\ tie\ for\ first.}
\qquad\mathrm{(E)}\ \text{All\ three\ tie.}
P
(0,0),(2,0),(2,1),(0,1)
P
(3,1)
\mathrm{(A)}\
\qquad\mathrm{(B)}\
\qquad\mathrm{(C)}\
\qquad\mathrm{(D)}\
\qquad\mathrm{(E)}\
a,b,
c
a(b+c) = 152, b(c+a) = 162,
c(a+b) = 170
abc
\mathrm{(A)}\ 672
\qquad\mathrm{(B)}\ 688
\qquad\mathrm{(C)}\ 704
\qquad\mathrm{(D)}\ 720
\qquad\mathrm{(E)}\ 750
\triangle XOY
m\angle XOY = 90^{\circ}
M
N
OX
OY
XN = 19
YM = 22
XY
\mathrm{(A)}\ 24
\qquad\mathrm{(B)}\ 26
\qquad\mathrm{(C)}\ 28
\qquad\mathrm{(D)}\ 30
\qquad\mathrm{(E)}\ 32
n
2002$, let
<cmath>\begin{eqnarray*} a_n =\left\{ \begin{array}{lr} 11, & \text{if\ }n\ \text{is\ divisible\ by\ }13\ \text{and\ }14;\\ 13, & \text{if\ }n\ \text{is\ divisible\ by\ }14\ \text{and\ }11;\\ 14, & \text{if\ }n\ \text{is\ divisible\ by\ }11\ \text{and\ }13;\\ 0, & \text{otherwise}. \end{array} \right. \end{eqnarray*}</cmath>
Calculate$ (Error compiling LaTeX. ! Missing $ inserted.)\sum_{n=1}^{2001} a_n\mathrm{(A)}\ 448
\qquad\mathrm{(B)}\ 486
\qquad\mathrm{(C)}\ 1560
\qquad\mathrm{(D)}\ 2001
\qquad\mathrm{(E)}\ 2002
n
1
a_n = \frac{1}{\log_n 2002}
b = a_2 + a_3 + a_4 + a_5
c = a_{10} + a_{11} + a_{12} + a_{13} + a_{14}
b- c
\mathrm{(A)}\ -2
\qquad\mathrm{(B)}\ -1
\qquad\mathrm{(C)}\ \frac{1}{2002}
\qquad\mathrm{(D)}\ \frac{1}{1001}
\qquad\mathrm{(E)}\ \frac 12
\triangle ABC
AB = 1
AC = 2
\overline{BC}
A
\overline{BC}
BC
\mathrm{(A)}\ \frac{1+\sqrt{2}}{2}
\qquad\mathrm{(B)}\ \frac{1+\sqrt{3}}2
\qquad\mathrm{(C)}\ \sqrt{2}
\qquad\mathrm{(D)}\ \frac 32
\qquad\mathrm{(E)}\ \sqrt{3}
ABCD
2002
P
PA = 24, PB = 32, PC = 28, PD = 45
ABCD
\mathrm{(A)}\ 4\sqrt{2002}
\qquad\mathrm{(B)}\ 2\sqrt{8465}
\qquad\mathrm{(C)}\ 2(48+\sqrt{2002})
\qquad\mathrm{(D)}\ 2\sqrt{8633}
\qquad\mathrm{(E)}\ 4(36 + \sqrt{113})
f(x) = x^2 + 6x + 1
R
(x,y)
R
\mathrm{(A)}\ 21
\qquad\mathrm{(B)}\ 22
\qquad\mathrm{(C)}\ 23
\qquad\mathrm{(D)}\ 24
\qquad\mathrm{(E)}\ 25$