2002 AMC 12B Problems/Problem 13

Revision as of 15:57, 2 July 2019 by Nafer (talk | contribs) (Solution 2)

Problem

The sum of $18$ consecutive positive integers is a perfect square. The smallest possible value of this sum is

$\mathrm{(A)}\ 169 \qquad\mathrm{(B)}\ 225 \qquad\mathrm{(C)}\ 289 \qquad\mathrm{(D)}\ 361 \qquad\mathrm{(E)}\ 441$

Solution

Solution 1

Let $a, a+1, \ldots, a + 17$ be the consecutive positive integers. Their sum, $18a + \frac{17(18)}{2} = 9(2a+17)$, is a perfect square. Since $9$ is a perfect square, it follows that $2a + 17$ is a perfect square. The smallest possible such perfect square is $25$ when $a = 4$, and the sum is $225 \Rightarrow \mathrm{(B)}$.

Solution 2

Notice that all five choices given are perfect squares.

Let $a$ be the smallest number, we have \[a+(a+1)+(a+2)+...+(a+17)=18a+\sum_{k=1}^{17}k=18a+153\]

Subtract 153 from each of the choices and then check the divisibility by 18, we have 225 as the smallest possible sum.

See also

2002 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS