Difference between revisions of "2002 AMC 12B Problems/Problem 22"

(Solution 2)
(Solution 2)
Line 16: Line 16:
 
=== Solution 2 ===
 
=== Solution 2 ===
  
<math>a_n = \frac{1}{\log_n 2002} = \frac{\log_n n}{log_n 2002} = \log_(2002) n</math> So
+
<math>a_n = \frac{1}{\log_n 2002} = \frac{\log_n n}{log_n 2002} = \log_{2002} {n}</math> So
 
<cmath>\begin{align*}
 
<cmath>\begin{align*}
 
b- c &= \left(log_2002 2 + log_2002 3 + log_2002 4 + log_2002 5 - log_2002 10 - log_2002 11 - log_2002 12 - log_2002 13 - log_2002 14))\\
 
b- c &= \left(log_2002 2 + log_2002 3 + log_2002 4 + log_2002 5 - log_2002 10 - log_2002 11 - log_2002 12 - log_2002 13 - log_2002 14))\\

Revision as of 23:34, 26 November 2017

Problem

For all integers $n$ greater than $1$, define $a_n = \frac{1}{\log_n 2002}$. Let $b = a_2 + a_3 + a_4 + a_5$ and $c = a_{10} + a_{11} + a_{12} + a_{13} + a_{14}$. Then $b- c$ equals

$\mathrm{(A)}\ -2 \qquad\mathrm{(B)}\ -1  \qquad\mathrm{(C)}\ \frac{1}{2002} \qquad\mathrm{(D)}\ \frac{1}{1001} \qquad\mathrm{(E)}\ \frac 12$

Solution

Solution 1

By the change of base formula, $a_n = \frac{1}{\frac{\log 2002}{\log n}} = \left(\frac{1}{\log 2002}\right) \log n$. Thus \begin{align*}b- c &= \left(\frac{1}{\log 2002}\right)(\log 2 + \log 3 + \log 4 + \log 5 - \log 10 - \log 11 - \log 12 - \log 13 - \log 14)\\ &= \left(\frac{1}{\log 2002}\right)\left(\log \frac{2 \cdot 3 \cdot 4 \cdot 5}{10 \cdot 11 \cdot 12 \cdot 13 \cdot 14}\right)\\  &= \left(\frac{1}{\log 2002}\right) \log 2002^{-1} = -\left(\frac{\log 2002}{\log 2002}\right) = -1 \Rightarrow \mathrm{(B)}\end{align*}

Solution 2

$a_n = \frac{1}{\log_n 2002} = \frac{\log_n n}{log_n 2002} = \log_{2002} {n}$ So

\begin{align*}
b- c &= \left(log_2002 2 + log_2002 3 + log_2002 4 + log_2002 5 - log_2002 10 - log_2002 11 - log_2002 12 - log_2002 13 - log_2002 14))\\
&= \left(log_2002 (\frac{2 \cdot 3 \cdot 4 \cdot 5}{10 \cdot 11 \cdot 12 \cdot 13 \cdot 14}))\\ 
&= \left(log_2002 2002^-1) = -1 \Rightarrow \mathrm{(B)}
\end{align*} (Error compiling LaTeX. Unknown error_msg)

See also

2002 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png